Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 687 - 699
DOI https://doi.org/10.2516/ogst/2013176
Published online 17 December 2013
  • OECD/NEA (2006) Safety of geological disposal of high-level and long-lived radioactive waste in France, An International Peer Review of the “Dossier 2005 Argile” Concerning Disposal in the Callovo-Oxfordian Formation. OECD Publishing. Available online at: https://www.oecd-nea.org/rwm/reports/2006/nea6178-argile.pdf. [Google Scholar]
  • Amaziane B., El Ossmani M., Serres C. (2008) Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media, Comput. Geosci. 12, 4, 83–98. [CrossRef] [Google Scholar]
  • Bourgeat A., Kern M., Schumacher S., Talandier J. (2004) The couplex test cases: Nuclear waste disposal simulation, Comput. Geosci. 8, 2, 437–449. [Google Scholar]
  • Chavent G., Jaffré J. (1986) Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier North–Holland, Amsterdam. [Google Scholar]
  • Chen Z., Huan G., Ma Y. (2006) Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia. [CrossRef] [Google Scholar]
  • Helmig R. (1997) Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin. [CrossRef] [Google Scholar]
  • Achdou Y., Bernardi C., Coquel F. (2003) A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations, Numer. Math. 96, 1, 17–42. [CrossRef] [MathSciNet] [Google Scholar]
  • Amaziane B., Bergam A., El Ossmani M., Mghazli Z. (2009) A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Int. J. Numer. Methods Fluids 59, 3, 259–284. [CrossRef] [Google Scholar]
  • Angermann L. (1995) Balanced a posteriori error estimates for finite volume type discretization of convection-dominated elliptic problems, Computing 55, 305–323. [CrossRef] [MathSciNet] [Google Scholar]
  • Bergam B., Mghazli Z., Verfürth R. (2003) A posteriori estimates for a finite-volume scheme for a nonlinear problem, Numer. Math. 95, 599–624. [CrossRef] [MathSciNet] [Google Scholar]
  • Bürkle D., Ohlberger M. (2002) Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5, 2, 95–106. [CrossRef] [Google Scholar]
  • Cancès C., Pop I.S., Vohralik M. (2013) An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp. (to appear). [Google Scholar]
  • Carstensen C., Lazarov R., Tomov S. (2005) Explicit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM, Numer. Anal. 42, 6, 2496–2521. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Vohralik M. (2011) A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes, Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, 821837, Springer Proc. Math., 4, Springer, Heidelberg. [Google Scholar]
  • Ju L., Wu W., Zhao W. (2009) Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization, Discrete Contin. Dyn. Syst. Ser. B. 11, 3, 669–690. [CrossRef] [MathSciNet] [Google Scholar]
  • Lazarov R., Tomov S. (2002) A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Comput. Geosci. 6, 483–503. [CrossRef] [Google Scholar]
  • Nicaise S. (2006) A posteriori error estimates for some cell centered finite volume methods for diffusion-convection–reaction problems, SIAM, Numer. Anal. 44, 949–978. [CrossRef] [MathSciNet] [Google Scholar]
  • Ohlberger M. (2001) A posteriori error estimates for vertex centered finite volume approximations to singularly perturbed nonlinear for convection-diffusion-reraction equations, Numer. Math. 87, 737–761. [CrossRef] [MathSciNet] [Google Scholar]
  • Ohlberger M. (2001) A posteriori error estimates for vertex centred finite volume approximations of convection-diffusion-reaction equation, M2AN, Math. Model. Numer. Anal. 35, 355–387. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Ohlberger M. (2009) A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Int. J. Numer. Methods Fluids 59, 3, 333–354. [CrossRef] [Google Scholar]
  • Ohlberger M., Rohde C. (2002) Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems, IMA J. Numer. Anal. 22, 2, 253–280. [CrossRef] [MathSciNet] [Google Scholar]
  • Pau G.S.H., Almgren A.S., Bell L.B., Lijewski M.J. (2009) A parallel second-order adaptive mesh algorithm for incompressible flow in porous media, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367, 1907, 4633–4654. [CrossRef] [MathSciNet] [Google Scholar]
  • Pau G.S.H., Bell J.B., Almgren A.S., Fagnan K.M., Lijewski M.J. (2012) An adaptive mesh refinement algorithm for compressible two-phase flow in porous media, Comput. Geosci. 16, 577–592. [CrossRef] [Google Scholar]
  • Vohralik M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111, 1, 121–158. [CrossRef] [MathSciNet] [Google Scholar]
  • Vohralik M. (2011) A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Eng. 200, 597–613. [CrossRef] [MathSciNet] [Google Scholar]
  • Melodie software, http://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/MELODIE-software-3133.aspx. [Google Scholar]
  • Mathieu G., Dymitrowska M., Bourgeois M. (2008) Modeling of radionuclide transport through repository components using finite volume finite element and multidomain methods, Phys. Chem. Earth 33, S216–S224. [CrossRef] [Google Scholar]
  • Bastian P. (1999) Numerical computation of multiphase flow in porous media, Habilitationsschrift. [Google Scholar]
  • Afif M., Amaziane B. (2008) Numerical simulation for the anisotropic benchmark by a vertex-centred finite volume method, Finite Volumes for Complex Applications V, 693–704, ISTE, London. [Google Scholar]
  • Verfürth R. (2005) Robust a posteriori error estimates for nonstationary convection–diffusion equations, SIAM, J. Numer. Anal. 43, 1783–1802. [CrossRef] [MathSciNet] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.