Dossier: Geosciences Numerical Methods
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 687 - 699
Published online 17 December 2013
  • OECD/NEA (2006) Safety of geological disposal of high-level and long-lived radioactive waste in France, An International Peer Review of the “Dossier 2005 Argile” Concerning Disposal in the Callovo-Oxfordian Formation. OECD Publishing. Available online at:
  • Amaziane B., El Ossmani M., Serres C. (2008) Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media, Comput. Geosci. 12, 4, 83–98. [CrossRef]
  • Bourgeat A., Kern M., Schumacher S., Talandier J. (2004) The couplex test cases: Nuclear waste disposal simulation, Comput. Geosci. 8, 2, 437–449.
  • Chavent G., Jaffré J. (1986) Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier North–Holland, Amsterdam.
  • Chen Z., Huan G., Ma Y. (2006) Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia. [CrossRef]
  • Helmig R. (1997) Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin. [CrossRef]
  • Achdou Y., Bernardi C., Coquel F. (2003) A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations, Numer. Math. 96, 1, 17–42. [CrossRef] [MathSciNet]
  • Amaziane B., Bergam A., El Ossmani M., Mghazli Z. (2009) A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Int. J. Numer. Methods Fluids 59, 3, 259–284. [CrossRef]
  • Angermann L. (1995) Balanced a posteriori error estimates for finite volume type discretization of convection-dominated elliptic problems, Computing 55, 305–323. [CrossRef] [MathSciNet]
  • Bergam B., Mghazli Z., Verfürth R. (2003) A posteriori estimates for a finite-volume scheme for a nonlinear problem, Numer. Math. 95, 599–624. [CrossRef] [MathSciNet]
  • Bürkle D., Ohlberger M. (2002) Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5, 2, 95–106. [CrossRef]
  • Cancès C., Pop I.S., Vohralik M. (2013) An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp. (to appear).
  • Carstensen C., Lazarov R., Tomov S. (2005) Explicit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM, Numer. Anal. 42, 6, 2496–2521. [CrossRef] [MathSciNet]
  • Ern A., Vohralik M. (2011) A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes, Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, 821837, Springer Proc. Math., 4, Springer, Heidelberg.
  • Ju L., Wu W., Zhao W. (2009) Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization, Discrete Contin. Dyn. Syst. Ser. B. 11, 3, 669–690. [CrossRef] [MathSciNet]
  • Lazarov R., Tomov S. (2002) A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Comput. Geosci. 6, 483–503. [CrossRef]
  • Nicaise S. (2006) A posteriori error estimates for some cell centered finite volume methods for diffusion-convection–reaction problems, SIAM, Numer. Anal. 44, 949–978. [CrossRef] [MathSciNet]
  • Ohlberger M. (2001) A posteriori error estimates for vertex centered finite volume approximations to singularly perturbed nonlinear for convection-diffusion-reraction equations, Numer. Math. 87, 737–761. [CrossRef] [MathSciNet]
  • Ohlberger M. (2001) A posteriori error estimates for vertex centred finite volume approximations of convection-diffusion-reaction equation, M2AN, Math. Model. Numer. Anal. 35, 355–387. [CrossRef] [EDP Sciences] [MathSciNet]
  • Ohlberger M. (2009) A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Int. J. Numer. Methods Fluids 59, 3, 333–354. [CrossRef]
  • Ohlberger M., Rohde C. (2002) Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems, IMA J. Numer. Anal. 22, 2, 253–280. [CrossRef] [MathSciNet]
  • Pau G.S.H., Almgren A.S., Bell L.B., Lijewski M.J. (2009) A parallel second-order adaptive mesh algorithm for incompressible flow in porous media, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367, 1907, 4633–4654. [CrossRef] [MathSciNet]
  • Pau G.S.H., Bell J.B., Almgren A.S., Fagnan K.M., Lijewski M.J. (2012) An adaptive mesh refinement algorithm for compressible two-phase flow in porous media, Comput. Geosci. 16, 577–592. [CrossRef]
  • Vohralik M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111, 1, 121–158. [CrossRef] [MathSciNet]
  • Vohralik M. (2011) A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Eng. 200, 597–613. [CrossRef] [MathSciNet]
  • Melodie software,
  • Mathieu G., Dymitrowska M., Bourgeois M. (2008) Modeling of radionuclide transport through repository components using finite volume finite element and multidomain methods, Phys. Chem. Earth 33, S216–S224. [CrossRef]
  • Bastian P. (1999) Numerical computation of multiphase flow in porous media, Habilitationsschrift.
  • Afif M., Amaziane B. (2008) Numerical simulation for the anisotropic benchmark by a vertex-centred finite volume method, Finite Volumes for Complex Applications V, 693–704, ISTE, London.
  • Verfürth R. (2005) Robust a posteriori error estimates for nonstationary convection–diffusion equations, SIAM, J. Numer. Anal. 43, 1783–1802. [CrossRef] [MathSciNet]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.