Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 701 - 729
DOI https://doi.org/10.2516/ogst/2013158
Published online 11 June 2014
  • Coats K.H., Thomas L.K., Pierson R.G. (1998) Compositional and black oil reservoir simulation, SFE Reservoir Evaluation and Engineering 1, 50990. [Google Scholar]
  • Chainais-Hillairet C., Enchéry G., Mamaghani M. (2011) Development of a refinement criterion for adaptive mesh refinement in steam-assisted gravity drainage simulation, Comput. Geosci. 15, 1, 17–34. [CrossRef] [Google Scholar]
  • Ding D., Jeannin L. (2001) A new methodology for singularity modelling in flow simulations in reservoir engineering, Comput. Geosci. 5, 93–119. [CrossRef] [Google Scholar]
  • Agélas L., Di Pietro D.A., Masson R. (2008) A symmetric and coercive finite volume scheme for multiphase porous media flow with applications in the oil industry, in Eymard R., Hérard J.-M. (eds), Finite Volumes for Complex Applications V, pp. 35–52, John Wiley & Sons, ISBN 978-1-84821-035-6. [Google Scholar]
  • Zienkiewicz O.C., Taylor R.L. (2000) The finite element method, volume 1 (The Basis), Butterworth-Heinemann, Oxford, 5th edition. [Google Scholar]
  • Eymard R., Gallouët T., Herbin R. (2010) Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes. SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30, 4, 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A., Ern A., Guermond J.-L. (2008) Discontinuous Galerkin methods for anisotropic semi-definite diffusion with advection, SIAM J. Numer. Anal. 46, 2, 805–831. [CrossRef] [MathSciNet] [Google Scholar]
  • Michel A. (2001) Convergence de schémas volumes finis pour des problèmes de convection diffusion non linéaires, PhD Thesis, Université de Provence. [Google Scholar]
  • Gallouët T., Larcher A., Latché J.C. (2012) Convergence of a finite volume scheme for the convection-diffusion equation with L1 data, Math. Comp. 81, 279, 1429–1454. [CrossRef] [MathSciNet] [Google Scholar]
  • Andreianov B., Bendahmane M., Karlsen K.H. (2010) Discrete duality finite volume schemes for doubly nonlinear degenerate hyperbolic-parabolic equations, J. Hyperbolic Diff. Equ. 7, 67. [Google Scholar]
  • Cancès C., Cathala M., Le Potier C. (2012) Monotone coercive cell-centered finite volume schemes for anisotropic diffusion equations. Numer. Math. 125, 387–417. [CrossRef] [MathSciNet] [Google Scholar]
  • Falgout R.D., Yang U.M. (2002) Hypre: a library of high performance preconditioners, in Preconditioners, Lecture Notes in Computer Science, 632–641. [Google Scholar]
  • Scheichl R., Vassilevski P.S., Zikatanov L.T. (2012) Mutilevel methods for elliptic problems with highly varying coefficients on non-aligned coarse grids, SIAM J. Numer. Anal. 50, 3, 1675–1694. [CrossRef] [Google Scholar]
  • Havé P., Masson R., Nataf F., Szydlarski M., Zhao T. (2013) Algebraic domain decomposition methods for highly heterogeneous problems. SIAM J. Sci. Comput. 35, 3, C284–C302. [CrossRef] [Google Scholar]
  • Efendiev Y., Galvis J., Ki Kang S., Lazarov R.D. (2012) Robust multiscale iterative solvers for nonlinear flows in highly heterogeneous media, Numer. Math. Theory Methods Appl. 5, 3, 359–383. [CrossRef] [MathSciNet] [Google Scholar]
  • Ayuso de Dios B., Zikatanov L. (2009) Uniformly convergent iterative methods for discontinuous Galerkin discretizations, J. Sci. Comput. 40, 4–36. [CrossRef] [MathSciNet] [Google Scholar]
  • Vohralík M., Wohlmuth B.I. (2013) Mixed finite element methods: implementation with one unknown per element, local flux expressions, positivity, polygonal meshes, and relations to other methods, Math. Models Methods Appl. Sci. 23, 5, 803–838. [Google Scholar]
  • Di Pietro D.A. (2013) On the conservativity of cell centered Galerkin methods, C. R. Acad. Sci. Paris, Ser. I 351, 155–159. [Google Scholar]
  • Di Pietro D.A., Lemaire S. (2013) An extension of the Crouzeix-Raviart space to general meshes with application to quasi-incompressible linear elasticity and Stokes flow, Math. Comp. Accepted for publication. Preprint http://hal.archives-ovverter.fr/hal/00611997 [Google Scholar]
  • Kim K.Y. (2007) A posteriori error estimators for locally conservative methods of nonlinear elliptic problems, Appl. Numer. Math. 57, 9, 1065–1080. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Nicaise S., Vohralík M. (2007) An accurate H(div) flux reconstruction for discontinuous Galerkin approximations of elliptic problems, C. R. Math. Acad. Sci. Paris 345, 12, 709–712. [Google Scholar]
  • Di Pietro D.A., Ern A. (2011) Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications, Springer-Verlag, Berlin. [Google Scholar]
  • Ainsworth M., Oden J.T. (2000) A posteriori error estimation in finite element analysis. Pure and Applied Mathematics (New York), Wiley-Interscience, John Wiley & Sons, New York, ISBN 0-471-29411-X. [Google Scholar]
  • Destuynder P., Métivet B. (1999) Explicit error bounds in a conforming finite element method, Math. Comp., 68, 228, 1379–1396. [CrossRef] [MathSciNet] [Google Scholar]
  • Luce R., Wohlmuth B.I. (2004) A local a posteriori error estimator based on equilibrated fluxes, SIAM J. Numer. Anal., 42, 4, 1394–1414. [CrossRef] [MathSciNet] [Google Scholar]
  • Braess D., Schöberl J. (2008) Equilibrated residual error estimator for edge elements, Math. Comp. 77, 262, 651–672. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Vohralík M. (2013) Adaptive inexact Newton methods with a posteriori stopping criteria for nonlinear diffusion PDEs, SIAM J. Sci. Comput. 35, 4, A1761–A1791. [Google Scholar]
  • Di Pietro D.A., Gratien J.-M. (2011) Lowest order methods for diffusive problems on general meshes: a unified approach to definition and implementation, in Finite Volumes for Complex Applications VI Problems & Perspectives, Prague, Springer-Verlag, Vol. 2, pp. 3–19. [Google Scholar]
  • Di Pietro D.A., Gratien J.-M., Prud’homme C. (2013) A domain-specific embedded language in C++ for lowest-order discretizations of diffusive problems on general meshes, BIT Numerical Mathematics 53, 1, 111–152. [Google Scholar]
  • Grospellier G., Lelandais B. (2009) The Arcane development framework, Proceedings of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing POOSC ’09, pp. 4:1–4:11, New York, NY, USA, ACM. [Google Scholar]
  • Prud’homme C., Chabannes V., Doyeux V., Ismail M., Samake A., Peña G. (2012) Feel++: a computational framework for Galerkin methods and advanced numerical methods, Coquel F., Gutnic M., Helluy P., Lagoutiére F., Rohde C., Seguin N., ESAIM: Proceedings, Vol. 38, pp. 429–455. [CrossRef] [EDP Sciences] [Google Scholar]
  • Flemisch B., Darcis M., Erbertseder K., Faigle B., Lauser A., Mosthaf K., Müthing S., Nuske P., Tatomir A., Wolff M., Helmig R. (2011) DuMu: DUNE for multi-Phase, Component, Scale, Physics,… Flow and transport in porous media, Adv. Water Res. 34, 9, 1102–1112. [CrossRef] [Google Scholar]
  • Bassi F., Botti L., Colombo A., Di Pietro D.A., Tesini P. (2012) On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations, J. Comput. Phys. 231, 1, 45–65. [CrossRef] [MathSciNet] [Google Scholar]
  • Aavatsmark I., Barkve T., Bøe Ø., Mannseth T. (1994) Discretization on non-orthogonal, curvilinear grids for multiphase flow, Proc. of the 4th European Conf. on the Mathematics of Oil Recovery, volume D, Røros, Norway. [Google Scholar]
  • Edwards M.G., Rogers C.F. (1994) A flux continuous scheme for the full tensor pressure equation, in Proc. of the 4th European Conf. on the Mathematics of Oil Recovery, volume D, Røros, Norway. [Google Scholar]
  • Agélas L., Di Pietro D.A., Droniou J. (2010) The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal. 44, 4, 597–625. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Aavatsmark I., Eigestad G.T., Mallison B.T., Nordbotten J.M. (2008) A compact multipoint flux approximation method with improved robustness, Numer. Methods Partial Differential Equations 24, 5, 1329–1360. [Google Scholar]
  • Aavatsmark I. (2002) An introduction to multipoint flux approximations for quadrilateral grids, Comput. Geosci. 6, 3–4, 405–432. [CrossRef] [MathSciNet] [Google Scholar]
  • Agélas L., Masson R. (2008) Convergence of the finite volume MPFA O scheme for heterogeneous anisotropic diffusion problems on general meshes, C. R. Acad. Sci. Paris, Ser. I 346, 1007–1012. [Google Scholar]
  • Di Pietro D.A. (2012) Cell centered Galerkin methods for diffusive problems, M2AN Math, Model. Numer. Anal. 46, 1, 111–144. [Google Scholar]
  • Vohralík M. (2006) Equivalence between lowest-order mixed finite element and multi-point finite volume methods on simplicial meshes, M2AN Math. Model. Numer. Anal. 40, 2, 367–391. [Google Scholar]
  • Raviart P.-A., Thomas J.-M. (1977) A mixed finite element method for 2nd order elliptic problems, in Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975), pp. 292–315. Lecture Notes in Math., Vol. 606, Springer, Berlin. [Google Scholar]
  • Brezzi F., Fortin M. (1991) Mixed and hybrid finite element methods, Vol. 15 Springer Series in Computational Mathematics, Springer-Verlag, New York, ISBN 0387-97582-9. [CrossRef] [Google Scholar]
  • Younès A., Mosé R., Ackerer P., Chavent G. (1999) A new formulation of the mixed finite element method for solving elliptic and parabolic PDE with triangular elements, J. Comput. Phys. 149, 1, 148–167. [CrossRef] [MathSciNet] [Google Scholar]
  • Hoffmann J. (2008) Equivalence of the lowest-order Raviart–Thomas mixed finite element method and the multi point flux approximation scheme on triangular grids. Preprint, University of Erlangen-Nürnberg. [Google Scholar]
  • Younès A., Fontaine V. (2008) Hybrid and multi-point formulations of the lowest-order mixed methods for Darcy’s flow on triangles, Internat. J. Numer. Methods Fluids 58, 9, 1041–1062. [CrossRef] [MathSciNet] [Google Scholar]
  • Brezzi F., Lipnikov K., Shashkov M. (2005) Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43, 5, 1872–1896. [Google Scholar]
  • Brezzi F., Lipnikov K., Simoncini V. (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15, 10, 1533–1551. [CrossRef] [MathSciNet] [Google Scholar]
  • Brezzi F., Lipnikov K., Shashkov M. (2006) Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes with curved faces, Math. Models Methods Appl. Sci. 16, 275–298. [CrossRef] [MathSciNet] [Google Scholar]
  • Eymard R., Gallouët T., Herbin R. (2007) A new finite volume scheme for anisotropic diffusion problems on general grids: convergence analysis, C. R. Acad. Sci. Paris, Ser. I 344, 403–406. [Google Scholar]
  • Droniou J., Eymard R. (2006) A mixed finite volume scheme for anisotropic diffusion problems on any grid, Numer. Math. 105, 1, 35–71. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A. (2010) Cell centered Galerkin methods, C. R. Acad. Sci. Paris, Ser. I 348, 31–34. [Google Scholar]
  • Droniou J., Eymard R., Gallouët T., Herbin R. (2010) A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci. 20, 2, 265–295. [CrossRef] [MathSciNet] [Google Scholar]
  • Droniou J., Eymard R., Gallouët T., Herbin R. (2013) Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations, Math. Models Meth. Appl. Sci. 12, 13–15. [Google Scholar]
  • Bonelle J., Ern A. (2012) Analysis of compatible discrete operator schemes for elliptic problems on polyhedral meshes. M2AN Math. Model. Numer. Anal. 48, 2, 553–581. [Google Scholar]
  • Droniou J. (2013) Finite volume schemes for diffusion equations: introduction to and review of recent methods, Math. Models Meth. Appl. Sci. Accepted for publication. [Google Scholar]
  • Allaire G. (2009) Analyse numérique et optimisation, Les Éditions de l’École Polytechnique, Palaiseau, France. [Google Scholar]
  • Di Pietro D.A., Ern A. (2010) Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations, Math. Comp. 79, 1303–1330. [CrossRef] [MathSciNet] [Google Scholar]
  • Arnold D.N. (1982) An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19, 742–760. [CrossRef] [MathSciNet] [Google Scholar]
  • Brenner S.C. (2003) Poincarié-Friedrichs inequalities for piecewise H1 functions, SIAM J. Numer. Anal. 41, 1, 306–324. [CrossRef] [MathSciNet] [Google Scholar]
  • Burman E., Zunino P. (2006) A domain decomposition method for partial differential equations with non-negative form based on interior penalties, SIAM J. Numer. Anal. 44, 1612–1638. [CrossRef] [MathSciNet] [Google Scholar]
  • Reed W.H., Hill T.R. (1973) Triangular mesh methods for the neutron transport equation. Technical Report LA-UR-73-0479, http://lib-www.lanl.gov/cgi-bin/getfile?00354107.pdf, Los Alamos Scientific Laboratory, Los Alamos, NM. [Google Scholar]
  • Lesaint P. (1973) Finite element methods for symmetric hyperbolic equations, Numer. Math. 21, 244–255. [CrossRef] [MathSciNet] [Google Scholar]
  • Lesaint P. (1975) Sur la résolution des systèmes hyperboliques du premier ordre par des méthodes d’éléments finis, PhD Thesis, Université Pierre et Marie Curie (Paris 6). [Google Scholar]
  • Lesaint P., Raviart P.-A. (1974) On a finite element method for solving the neutron transport equation, in Mathematical Aspects of Finite Elements in Partial Differential Equations, pp. 89–123. Publication No. 33. Math. Res. Center, Univ. of Wisconsin-Madison, Academic Press, New York. [CrossRef] [Google Scholar]
  • Cockburn B., Shu C.-W. (1989) TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. II. General framework, Math. Comp. 52, 186, 411–435. [MathSciNet] [Google Scholar]
  • Cockburn B., Shu C.-W. (1991) The Runge-Kutta local projection P1-discontinuous-Galerkin finite element method for scalar conservation laws, RAIRO Modél. Math. Anal. Numér. 25, 3, 337–361. [Google Scholar]
  • Nitsche J. (1971) Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36, 9–15. Collection of articles dedicated to Lothar Collatz on his sixtieth birthday. [Google Scholar]
  • Nitsche J. (1972) On Dirichlet problems using subspaces with nearly zero boundary conditions, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972), Academic Press, New York, pp. 603–627. [CrossRef] [Google Scholar]
  • Babuška I. (1973) The finite element method with penalty, Math. Comp. 27, 221–228. [Google Scholar]
  • Baker G.A. (1977) Finite element methods for elliptic equations using nonconforming elements, Math. Comp. 31, 137, 45–49. [Google Scholar]
  • Wheeler M.F. (1978) An elliptic collocation-finite element method with interior penalties, SIAM J. Numer. Anal. 15, 152–161. [CrossRef] [MathSciNet] [Google Scholar]
  • Bassi F., Rebay S. (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J. Comput. Phys. 131, 2, 267–279. [CrossRef] [MathSciNet] [Google Scholar]
  • Arnold D.N., Brezzi F., Cockburn B., Marini L.D. (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39, 5, 1749–1779. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Guermond J.-L. (2006) Discontinuous Galerkin methods for Friedrichs’ systems. I. General theory, SIAM J. Numer. Anal. 44, 2, 753–778. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Guermond J.-L. (2006) Discontinuous Galerkin methods for Friedrichs’ systems. II. Second-order elliptic PDEs, SIAM J. Numer. Anal. 44, 6, 2363–2388. [CrossRef] [Google Scholar]
  • Ern A., Guermond J.-L. (2008) Discontinuous Galerkin methods for Friedrichs’ systems. III. Multi-field theories with partial coercivity, SIAM J. Numer. Anal. 46, 2, 776–804. [CrossRef] [Google Scholar]
  • Sun D.C., Wheeler M.F. (2005) L2(H1) norm a posteriori error estimation for discontinuous Galerkin approximations of reactive transport problems, J. Sci. Comp. 205, 501–530. [CrossRef] [Google Scholar]
  • Sun D.C., Wheeler M.F. (2005) Discontinuous Galerkin methods for coupled flow and reactive transport problems, Appl. Numer. Math. 52, 2-3, 283–298. [Google Scholar]
  • Bastian P., Engwer C., Fahlke J., Ippisch O. (2011) An unfitted discontinuous Galerkin method for pore-scale simulations of solute transport, Math. Comput. Simul. 81, 10, 2051–2061. [CrossRef] [Google Scholar]
  • Houston P., Schwab C., Süli E. (2002) Discontinuous hp-finite element methods for advection-diffusion-reaction problems, SIAM J. Numer. Anal. 39, 2133–2163. [CrossRef] [MathSciNet] [Google Scholar]
  • Scovazzi G., Gerstenberger A., Collis S.S. (2013) A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media, J. Comput. Phys. 233, 373–399. [CrossRef] [Google Scholar]
  • Cancès C., Pop I.S., Vohralík M. (2014) An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp., 83, 153–188. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A., Vohralík M., Yousef S. (2012) Adaptive regularization, linearization, discretization, and a posteriori error control for the two-phase Stefan problem, Math. Comp. Accepted for publication. [Google Scholar]
  • El Alaoui L., Ern A., Vohralík M. (2011) Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems, Comput. Methods Appl. Mech. Engrg. 200, 37–40, 2782–2795. [Google Scholar]
  • Ern A., Vohralík M. (2010) A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM J. Numer. Anal. 48, 1, 198–223. [CrossRef] [MathSciNet] [Google Scholar]
  • Ern A., Vohralík M. (2011) A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes, in Fořt J., Fürst J., Halama J., Herbin R., Hubert F. (eds), Finite Volumes for Complex Applications VI, pp. 821–837, Berlin, Heidelberg, Springer-Verlag. ISBN 978-3-642-20670-2. [Google Scholar]
  • Hannukainen A., Stenberg R., Vohralík M. (2012) A unified framework for a posteriori error estimation for the Stokes problem, Numer. Math. 122, 4, 725–769. [CrossRef] [MathSciNet] [Google Scholar]
  • Jiránek P., Strakoš Z., Vohralík M. (2010) A posteriori error estimates including algebraic error and stopping criteria for iterative solvers, SIAM J. Sci. Comput. 32, 3, 1567–1590. [CrossRef] [MathSciNet] [Google Scholar]
  • Vohralík M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111, 1, 121–158. [CrossRef] [MathSciNet] [Google Scholar]
  • Vohralík M. (2011) Guaranteed and fully robust a posteriori error estimates for conforming discretizations of diffusion problems with discontinuous coefficients, J. Sci. Comput. 46, 3, 397–438. [CrossRef] [Google Scholar]
  • Vohralík M. (2012) A posteriori error estimates for efficiency and error control in numerical simulations, Université Pierre et Marie Curie, Lecture notes, Course NM497. [Google Scholar]
  • Vohralík M., Wheeler M.F. (2013) A posteriori error estimates, stopping criteria, and adaptivity for two-phase flows. Comput. Geosci. 17, 5, 789–812. [Google Scholar]
  • Prager W., Synge J.L. (1947) Approximations in elasticity based on the concept of function space, Quart. Appl. Math. 5, 241–269. [MathSciNet] [Google Scholar]
  • Ladevèze P. (1975) Comparaison de modèles de milieux continus, PhD Thesis, Université Pierre et Marie Curie (Paris 6). [Google Scholar]
  • Verfurth R. (1996) A review of a posteriori error estimation and adaptive mesh-refinement techniques, Teubner-Wiley, Stuttgart. ISBN 3-519-02605-8. [Google Scholar]
  • Neittaanmäki P., Repin S. (2004) Reliable methods for computer simulation, volume 33 of Studies in Mathematics and its Applications, Elsevier Science B.V., Amsterdam. ISBN 0-444-51376-0. Error control and a posteriori estimates. [Google Scholar]
  • Repin S.I. (2008) A posteriori estimates for partial differential equations, volume 4 of Radon Series on Computational and Applied Mathematics, Walter de Gruyter GmbH & Co. KG, Berlin, ISBN 978-3-11-019153-0. [CrossRef] [Google Scholar]
  • Babuška I., Rheinboldt W.C. (1978) Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15, 4, 736–754. [CrossRef] [MathSciNet] [Google Scholar]
  • Ladevèze P., Leguillon D. (1983) Error estimate procedure in the finite element method and applications, SIAM J. Numer. Anal. 20, 3, 485–509. [CrossRef] [MathSciNet] [Google Scholar]
  • Carstensen C., Funken S.A. (1999) Fully reliable localized error control in the FEM, SIAM J. Sci. Comput. 21, 4, 1465–1484. [CrossRef] [Google Scholar]
  • Verfürth R. (2003) A posteriori error estimates for finite element discretizations of the heat equation, Calcolo 40, 3, 195–212. [CrossRef] [MathSciNet] [Google Scholar]
  • Ainsworth M. (2005) A synthesis of a posteriori error estimation techniques for conforming, non-conforming and discontinuous Galerkin finite element methods, in Recent advances in adaptive computation, Vol. 383, Contemp. Math., 1-14. Amer. Math. Soc., Providence, RI. [Google Scholar]
  • Nicaise S. (2005) A posteriori error estimations of some cell-centered finite volume methods, SIAM J. Numer. Anal. 43, 4, 1481–1503. [CrossRef] [Google Scholar]
  • Vejchodský T. (2006) Guaranteed and locally computable a posteriori error estimate, IMA J. Numer. Anal. 26, 3, 525–540. [CrossRef] [MathSciNet] [Google Scholar]
  • Becker R., Johnson C., Rannacher R. (1995) Adaptive error control for multigrid finite element methods, Computing 55, 4, 271–288. [CrossRef] [MathSciNet] [Google Scholar]
  • Chaillou A.L., Suri M. (2006) Computable error estimators for the approximation of nonlinear problems by linearized models, Comput. Methods Appl. Mech. Eng. 196, 1–3, 210–224. [CrossRef] [Google Scholar]
  • Deuflhard P. (2004) Newton methods for nonlinear problems, volume 35 of Springer Series in Computational Mathematics, Springer-Verlag, Berlin, ISBN 3-540-21099-7. Affine invariance and adaptive algorithms. [Google Scholar]
  • Liesen J., Strakoš Z. (2013) Krylov Subspace Methods. Principles and Analysis, Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford, United Kingdom, ISBN 978-0-19-965541-0. [Google Scholar]
  • Bernardi C., Verfürth R. (2000) Adaptive finite element methods for elliptic equations with non-smooth coefficients, Numer. Math. 85, 4, 579–608. [CrossRef] [MathSciNet] [Google Scholar]
  • Hilhorst D., Vohralík M. (2011) A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Engrg. 200, 5–8, 597–613. [Google Scholar]
  • Klieber W., Rivière B. (2006) Adaptive simulations of two-phase flow by discontinuous Galerkin methods, Comput. Methods Appl. Mech. Engrg., 196, 1–3, 404–419. [CrossRef] [MathSciNet] [Google Scholar]
  • Di Pietro D.A., Vohralík M., Yousef S. (2013) A posteriori error estimates, stopping criteria, and adaptivity for compositional multi-phase flows. Preprint HAL-00839487. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.