Dossier: Geosciences Numerical Methods
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Number 4, July-August 2014
Dossier: Geosciences Numerical Methods
Page(s) 673 - 686
DOI https://doi.org/10.2516/ogst/2013157
Published online 04 December 2013
  • Bastian P. (2003) Higher order discontinuous Galerkin methods for flow and transport in porous media, Bänsch E. (ed.), Challenges in Scientific Computing - CISC 2002, pp. 1–22. [CrossRef] [Google Scholar]
  • Bastian P., Ippisch O., Rezanezhad F., Vogel H.J., Roth K. (2007) Numerical simulation and experimental studies of unsaturated water flow in heterogeneous systems, Rannachar R., Warndz J. (eds), Reactive Flows, Diffusion and Transport, pp. 579–597. [CrossRef] [Google Scholar]
  • Celia M.A., Bouloutas E.T., Zarba R.L. (1990) A general mass-conservative numerical solution for the unsaturated flow equation, Water Resources Research 26, 7, 1483–1496. [Google Scholar]
  • Cockburn B., Shu C.W. (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM Journal on Numerical Analysis 35, 6, 2440–2463. [Google Scholar]
  • Coudière Y., Pierre C., Rousseau O., Turpault R. (2009) A 2D/3D discrete duality finite volume scheme. Application to ECG simulation, IJFV 6, 1, 1–24. [Google Scholar]
  • Curtiss C.F., Hirschfelder J.O. (1952) Integration of stiff equations, Proceedings of the National Academy of Sciences of the United States of America 38, 3, 235. [Google Scholar]
  • Cuthill E., McKee J. (1969) Reducing the bandwidth of sparse symmetric matrices, Proceedings of the 1969 24th national conference, ACM, pp. 157–172. [CrossRef] [Google Scholar]
  • Di Pietro D.A., Ern A. (2012) Mathematical Aspects of Discontinuous Galerkin Methods, Springer. [CrossRef] [Google Scholar]
  • Domelevo K., Omnes P. (2005) A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, ESAIM: Mathematical Modelling and Numerical Analysis 39, 6, 1203–1249. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
  • Ern A., Vohralík M. (2010) A posteriori error estimation based on potential and flux reconstruction for the heat equation, SIAM Journal on Numerical Analysis 48, 1, 198–223. [Google Scholar]
  • Eymard R., Guichard C., Herbin R., Masson R. (2012) Vertex-centred discretization of multiphase compositional Darcy flows on general meshes, Computational Geosciences, pp. 1–19. [Google Scholar]
  • Fagherazzi S., Furbish D.J., Rasetarinera P., Hussaini M.Y. (2004) Application of the discontinuous spectral Galerkin method to groundwater flow, Advances in Water Resources 27, 2, 129–140. [CrossRef] [Google Scholar]
  • Hairer G., Wanner E. (2010) Solving ordinary differential equations II, Springer. [Google Scholar]
  • Haverkamp R., Vauclin M., Touma J., Wierenga P.J., Vachaud G. (1977) A comparison of numerical simulation models for one-dimensional infiltration, Soil Science Society of America Journal 41, 2, 285–294. [CrossRef] [Google Scholar]
  • Herbin R., Hubert F. (2008) Benchmark on discretization schemes for anisotropic diffusion problems on general grids. Finite volumes for complex applications V, pp. 659–692, ISTE, London. [Google Scholar]
  • Hermeline F. (2000) A finite volume method for the approximation of diffusion operators on distorted meshes, Journal of Computational Physics 160, 2, 481–499. [Google Scholar]
  • Klieber W., Rivière B. (2006) Adaptive simulations of two-phase flow by discontinuous Galerkin methods, Computer Methods in Applied Mechanics and Engineering 196, 1, 404–419. [Google Scholar]
  • Knabner P., Schneid E. (2002) Adaptive hybrid mixed finite element discretization of instationary variably saturated flow in porous media, High Performance Scientific and Engineering Computing 29, 37–44. [CrossRef] [Google Scholar]
  • Krell S. (2010) Schémas Volumes Finis en mécanique des fluides complexes, PhD thesis, Université de Provence-Aix-Marseille I. [Google Scholar]
  • Lesaint P., Raviart P.A. (1974) On a finite element method for solving the neutron transport equations, Université Paris VI. [Google Scholar]
  • Manzini G., Ferraris S. (2004) Mass-conservative finite volume methods on 2D unstructured grids for the Richards’ equation, Advances in Water Resources 27, 12, 1199–1215. [CrossRef] [Google Scholar]
  • Narasimhan T.N., Witherspoon P.A. (1976) An integrated finite difference method for analyzing fluid flow in porous media, Water Resources Research 12, 1, 57–64. [CrossRef] [Google Scholar]
  • Simmons J., Landrum B.L., Pinson J.M., Crawford P.B. (1959) Swept areas after breakthrough in vertically fractured five-spot patterns, Trans. AIME 216, 73. [Google Scholar]
  • Sochala P., Ern A., Piperno S. (2009) Mass conservative bdfdiscontinuous galerkin/explicit finite volume schemes for coupling subsurface and overland flows, Computer Methods in Applied Mechanics and Engineering 198, 27, 2122–2136. [CrossRef] [MathSciNet] [Google Scholar]
  • Van Genuchten M.T. (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Science Society of America Journal 44, (5), 892–898. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.