- OECD/NEA (2006) Safety of geological disposal of high-level and long-lived radioactive waste in France, An International Peer Review of the “Dossier 2005 Argile” Concerning Disposal in the Callovo-Oxfordian Formation. OECD Publishing. Available online at: https://www.oecd-nea.org/rwm/reports/2006/nea6178-argile.pdf. [Google Scholar]
- Amaziane B., El Ossmani M., Serres C. (2008) Numerical modeling of the flow and transport of radionuclides in heterogeneous porous media, Comput. Geosci. 12, 4, 83–98. [CrossRef] [Google Scholar]
- Bourgeat A., Kern M., Schumacher S., Talandier J. (2004) The couplex test cases: Nuclear waste disposal simulation, Comput. Geosci. 8, 2, 437–449. [Google Scholar]
- Chavent G., Jaffré J. (1986) Mathematical Models and Finite Elements for Reservoir Simulation, Elsevier North–Holland, Amsterdam. [Google Scholar]
- Chen Z., Huan G., Ma Y. (2006) Computational Methods for Multiphase Flows in Porous Media, SIAM, Philadelphia. [Google Scholar]
- Helmig R. (1997) Multiphase Flow and Transport Processes in the Subsurface, Springer, Berlin. [Google Scholar]
- Achdou Y., Bernardi C., Coquel F. (2003) A priori and a posteriori analysis of finite volume discretizations of Darcy’s equations, Numer. Math. 96, 1, 17–42. [CrossRef] [MathSciNet] [Google Scholar]
- Amaziane B., Bergam A., El Ossmani M., Mghazli Z. (2009) A posteriori estimators for vertex centred finite volume discretization of a convection-diffusion-reaction equation arising in flow in porous media, Int. J. Numer. Methods Fluids 59, 3, 259–284. [CrossRef] [Google Scholar]
- Angermann L. (1995) Balanced a posteriori error estimates for finite volume type discretization of convection-dominated elliptic problems, Computing 55, 305–323. [CrossRef] [MathSciNet] [Google Scholar]
- Bergam B., Mghazli Z., Verfürth R. (2003) A posteriori estimates for a finite-volume scheme for a nonlinear problem, Numer. Math. 95, 599–624. [CrossRef] [MathSciNet] [Google Scholar]
- Bürkle D., Ohlberger M. (2002) Adaptive finite volume methods for displacement problems in porous media, Comput. Vis. Sci. 5, 2, 95–106. [CrossRef] [Google Scholar]
- Cancès C., Pop I.S., Vohralik M. (2013) An a posteriori error estimate for vertex-centered finite volume discretizations of immiscible incompressible two-phase flow, Math. Comp. (to appear). [Google Scholar]
- Carstensen C., Lazarov R., Tomov S. (2005) Explicit and averaging a posteriori error estimates for adaptive finite volume methods, SIAM, Numer. Anal. 42, 6, 2496–2521. [CrossRef] [MathSciNet] [Google Scholar]
- Ern A., Vohralik M. (2011) A unified framework for a posteriori error estimation in elliptic and parabolic problems with application to finite volumes, Finite volumes for complex applications. VI. Problems & perspectives. Volume 1, 2, 821837, Springer Proc. Math., 4, Springer, Heidelberg. [Google Scholar]
- Ju L., Wu W., Zhao W. (2009) Adaptive finite volume methods for steady convection-diffusion equations with mesh optimization, Discrete Contin. Dyn. Syst. Ser. B. 11, 3, 669–690. [CrossRef] [MathSciNet] [Google Scholar]
- Lazarov R., Tomov S. (2002) A posteriori error estimates for finite volume element approximations of convection-diffusion-reaction equations, Comput. Geosci. 6, 483–503. [CrossRef] [Google Scholar]
- Nicaise S. (2006) A posteriori error estimates for some cell centered finite volume methods for diffusion-convection–reaction problems, SIAM, Numer. Anal. 44, 949–978. [CrossRef] [MathSciNet] [Google Scholar]
- Ohlberger M. (2001) A posteriori error estimates for vertex centered finite volume approximations to singularly perturbed nonlinear for convection-diffusion-reraction equations, Numer. Math. 87, 737–761. [CrossRef] [MathSciNet] [Google Scholar]
- Ohlberger M. (2001) A posteriori error estimates for vertex centred finite volume approximations of convection-diffusion-reaction equation, M2AN, Math. Model. Numer. Anal. 35, 355–387. [Google Scholar]
- Ohlberger M. (2009) A review of a posteriori error control and adaptivity for approximations of non-linear conservation laws, Int. J. Numer. Methods Fluids 59, 3, 333–354. [CrossRef] [Google Scholar]
- Ohlberger M., Rohde C. (2002) Adaptive finite volume approximations for weakly coupled convection dominated parabolic systems, IMA J. Numer. Anal. 22, 2, 253–280. [CrossRef] [MathSciNet] [Google Scholar]
- Pau G.S.H., Almgren A.S., Bell L.B., Lijewski M.J. (2009) A parallel second-order adaptive mesh algorithm for incompressible flow in porous media, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 367, 1907, 4633–4654. [CrossRef] [MathSciNet] [Google Scholar]
- Pau G.S.H., Bell J.B., Almgren A.S., Fagnan K.M., Lijewski M.J. (2012) An adaptive mesh refinement algorithm for compressible two-phase flow in porous media, Comput. Geosci. 16, 577–592. [CrossRef] [Google Scholar]
- Vohralik M. (2008) Residual flux-based a posteriori error estimates for finite volume and related locally conservative methods, Numer. Math. 111, 1, 121–158. [CrossRef] [MathSciNet] [Google Scholar]
- Vohralik M. (2011) A posteriori error estimates for combined finite volume–finite element discretizations of reactive transport equations on nonmatching grids, Comput. Methods Appl. Mech. Eng. 200, 597–613. [CrossRef] [MathSciNet] [Google Scholar]
- Melodie software, http://www.irsn.fr/EN/Research/Scientific-tools/Computer-codes/Pages/MELODIE-software-3133.aspx. [Google Scholar]
- Mathieu G., Dymitrowska M., Bourgeois M. (2008) Modeling of radionuclide transport through repository components using finite volume finite element and multidomain methods, Phys. Chem. Earth 33, S216–S224. [CrossRef] [Google Scholar]
- Bastian P. (1999) Numerical computation of multiphase flow in porous media, Habilitationsschrift. [Google Scholar]
- Afif M., Amaziane B. (2008) Numerical simulation for the anisotropic benchmark by a vertex-centred finite volume method, Finite Volumes for Complex Applications V, 693–704, ISTE, London. [Google Scholar]
- Verfürth R. (2005) Robust a posteriori error estimates for nonstationary convection–diffusion equations, SIAM, J. Numer. Anal. 43, 1783–1802. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 69, Numéro 4, July-August 2014
Dossier: Geosciences Numerical Methods
|
|
---|---|---|
Page(s) | 687 - 699 | |
DOI | https://doi.org/10.2516/ogst/2013176 | |
Publié en ligne | 17 décembre 2013 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.