Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 2, March–April 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Numéro d'article 11
Nombre de pages 11
DOI https://doi.org/10.2516/ogst/2017006
Publié en ligne 20 mars 2017
  • Bork O., Schlueter M., Raebiger N. (2005) The impact of local phenomena on mass transfer in gas-liquid systems, Can. J. Chem. Eng. 83, 4, 658–666. [CrossRef]
  • Vasconcelos J.M.T., Orvalho S.P., Alves S.S. (2002) Gas-liquid mass transfer to single bubbles: effect of surface contamination, AIChE J. 48, 6, 1145–1154. [CrossRef]
  • Vasconcelos J., Rodrigues J., Orvalho S., Alves S., Mendes R., Reis A. (2003) Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors, Chem. Eng. Sci. 58, 8, 1431–1440. [CrossRef]
  • Painmanakul P., Loubière K., Hébrard G., Mietton-Peuchot M., Roustan M. (2005) Effect of surfactants on liquid-side mass transfer coefficients, Chem. Eng. Sci. 60, 22, 6480–6491. [CrossRef]
  • Hebrard G., Zeng J., Loubiere K. (2009) Effect of surfactants on liquid side mass transfer coefficients: a new insight, Chem. Eng. J. 148, 1, 132–138. [CrossRef]
  • Sardeing R., Painmanakul P., Hébrard G. (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems: a first step to modeling, Chem. Eng. Sci. 61, 19, 6249–6260. [CrossRef]
  • Ferreira A., Cardoso P., Teixeira J.A., Rocha F. (2013) pH influence on oxygen mass transfer coefficient in a bubble column. Individual characterization of kL and a, Chem. Eng. Sci. 100, 145–152. [CrossRef]
  • Dani A., Guiraud P., Cockx A. (2007) Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence, Chem. Eng. Sci. 62, 24, 7245–7252. [CrossRef]
  • Kück U.D., Schlüter M., Räbiger N. (2012) Local measurement of mass transfer rate of a single bubble with and without a chemical reaction, J. Chem. Eng. Jpn 45, 708–712.
  • Dietrich N., Francois J., Jimenez M., Cockx A., Guiraud P., Hébrard G. (2015) Fast measurements of the gas-liquid diffusion coefficient in the Gaussian wake of a spherical bubble, Chem. Eng. Technol. 38, 5, 941–946. [CrossRef]
  • Jimenez M., Dietrich N., Grace J.R., Hebrard G. (2014) Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques, Water Res. 58, 111–121. [CrossRef] [PubMed]
  • Khinast J.G., Koynov A.A., Leib T.M. (2003) Reactive mass transfer at gas-liquid interfaces: impact of micro-scale fluid dynamics on yield and selectivity of liquid-phase cyclohexane oxidation, Chem. Eng. Sci. 58, 17, 3961–3971. [CrossRef]
  • Aboulhasanzadeh B., Hosoda S., Tomiyama A., Tryggvason G. (2013) A validation of an embedded analytical description approach for the computations of high Schmidt number mass transfer from bubbles in liquids, Chem. Eng. Sci. 101, 165–174. [CrossRef]
  • Aboulhasanzadeh B., Thomas S., Taeibi-Rahni M., Tryggvason G. (2012) Multiscale computations of mass transfer from buoyant bubbles, Chem. Eng. Sci. 75, 456–467. [CrossRef]
  • Bothe D., Koebe M., Wielage K., Prüss J., Warnecke H.-J. (2004) Direct numerical simulation of mass transfer between rising gas bubbles and water, in: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 159–174. [CrossRef]
  • Bothe D., Koebe M., Wielage K., Warnecke H.-J. (2003) VOF-simulations of mass transfer from single bubbles and bubble chains rising in aqueous solutions, ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, 6-10 July, Honolulu, Hawaii, USA, Vol. 2: Symposia, Parts A, B, and C, Paper No. FEDSM2003-45155, pp. 423–429.
  • Koynov A., Khinast J.G. (2004) Effects of hydrodynamics and Lagrangian transport on chemically reacting bubble flows, Chem. Eng. Sci. 59, 18, 3907–3927. [CrossRef]
  • Koynov A., Khinast J.G., Tryggvason G. (2005) Mass transfer and chemical reactions in bubble swarms with dynamic interfaces, AIChE J. 51, 10, 2786–2800. [CrossRef]
  • Fleischer C., Becker S., Eigenberger G. (1996) Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column, Chem. Eng. Sci. 51, 10, 1715–1724. [CrossRef]
  • Darmana D., Deen N., Kuipers J. (2005) Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model, Chem. Eng. Sci. 60, 12, 3383–3404. [CrossRef]
  • Darmana D., Henket R., Deen N., Kuipers J. (2007) Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of CO2 into NaOH solution, numerical and experimental study, Chem. Eng. Sci. 62, 9, 2556–2575. [CrossRef]
  • Houghton W.T. (1966) Mass transfer with chemical reaction from single spheres, PhD Thesis, McMaster University, Hamilton, Ontario.
  • Wylock C., Dehaeck S., Cartage T., Colinet P., Haut B. (2011) Experimental study of gas-liquid mass transfer coupled with chemical reactions by digital holographic interferometry, Chem. Eng. Sci. 66, 14, 3400–3412. [CrossRef]
  • Stone J.R., Marletta M.A. (1994) Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states, Biochemistry 33, 18, 5636–5640. [CrossRef]
  • Blaesi E.J., Gardner J.D., Fox B.G., Brunold T.C. (2013) Spectroscopic and computational characterization of the NO adduct of substrate-bound Fe(II) cysteine dioxygenase: insights into the mechanism of O2 activation, Biochemistry 52, 35, 6040–6051. [CrossRef]
  • Ignarro L.J. (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology (nobel lecture), Angew. Chem. Int. Ed. 38, 13-14, 1882–1892. [CrossRef]
  • Harrop T.C. (2015) Chapter Five – New insights on {FeNO}n (n = 7, 8) systems as enzyme models and HNO donors Adv. Inorg. Chem. 67, 243–263. [CrossRef]
  • Franke A., van Eldik R. (2013) Factors that determine the mechanism of NO activation by metal complexes of biological and environmental relevance, Eur. J. Inorg. Chem. 2013, 4, 460–480. [CrossRef]
  • Schneppensieper T., Wanat A., Stochel G., van Eldik R. (2002) Mechanistic information on the reversible binding of NO to selected iron(II) chelates from activation parameters, Inorg. Chem. 41, 9, 2565–2573. [CrossRef] [PubMed]
  • Schneppensieper T., Wanat A., Stochel G., Goldstein S., Meyerstein D., van Eldik R. (2001) Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of iron(II) in aqueous solution, Eur. J. Inorg. Chem. 2001, 9, 2317–2325. [CrossRef]
  • Xia Y., Zhao J., Li M., Zhang S., Li S., Li W. (2016) Bioelectrochemical reduction of Fe(II)EDTA-NO in a biofilm electrode reactor: performance, mechanism, and kinetics, Environ. Sci. Technol. 50, 7, 3846–3851. [CrossRef] [PubMed]
  • Li W., Zhao J., Zhang L., Xia Y., Liu N., Li S., Zhang S. (2016) Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process, Sci. Rep. 6, 18876. [CrossRef] [PubMed]
  • Chen J., Wang L., Zheng J., Chen J. (2015) N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH, Bioprocess Biosyst. Eng. 38, 7, 1373–1380. [CrossRef] [PubMed]
  • Zhang S., Chen H., Xia Y., Liu N., Lu B.-H., Li W. (2014) Current advances of integrated processes combining chemical absorption and biological reduction for NOx removal from flue gas, Appl. Microbiol. Biotechnol. 98, 20, 8497–8512. [CrossRef]
  • de Salas C., Heinrich M.R. (2014) Fixation and recycling of nitrogen monoxide through carbonitrosation reactions, Green Chem. 16, 6, 2982. [CrossRef]
  • Liu N., Jiang Y., Zhang L., Xia Y., Lu B., Xu B., Li W., Li S. (2014) Evaluation of NOx removal from flue gas by a chemical absorption – biological reduction integrated system: glucose consumption and utilization pathways, Energy Fuels 28, 12, 7591–7598. [CrossRef]
  • Xia Y., Shi Y., Zhou Y., Liu N., Li W., Li S. (2014) A new approach for NOx removal from flue gas using a biofilm electrode reactor coupled with chemical absorption, Energy Fuels 28, 5, 3332–3338. [CrossRef]
  • Niu H., Leung D. (2010) A review on the removal of nitrogen oxides from polluted flow by bioreactors, Environ. Rev. 18, NA, 175–189. [CrossRef]
  • van der Maas P., Harmsen L., Weelink S., Klapwijk B., Lens P. (2004) Denitrification in aqueous FeEDTA solutions, J. Chem. Technol. Biotechnol. 79, 8, 835–841. [CrossRef]
  • Sander R. (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos. Chem. Phys. 15, 8, 4399–4981. [CrossRef]
  • Wolf M., Kluefers P. (2016) Structure and bonding of high-spin nitrosyl-iron(II) compounds with mixed N,O-chelators and aqua ligands, Eur. J. Inorg. Chem., DOI: 10.1002/ejic.201601329.
  • Aas B., Kluefers P. (2016) The structural chemistry of stable high-spin nitrosyl-iron(II) compounds with aminecarboxylato co-ligands in aqueous solution, Eur. J. Inorg. Chem., DOI: 10.1002/ejic.201601330.
  • Simon M. (2015) Koaleszenz von Tropfen und Tropfenschwärmen, PhD Thesis, University of Kaiserslautern, Kaiserslautern, Germany.
  • Li H., Fang W. (1988) Kinetics of absorption of nitric oxide in aqueous iron(II)-EDTA solution, Ind. Eng. Chem. Res. 27, 5, 770–774. [CrossRef]
  • Gambardella F., Alberts M.S., Winkelman J.G.M., Heeres E.J. (2005) Experimental and modeling studies on the absorption of NO in aqueous ferrous EDTA solutions, Ind. Eng. Chem. Res. 44, 12, 4234–4242. [CrossRef]
  • Zacharia I.G., Deen W.M. (2005) Diffusivity and solubility of nitric oxide in water and saline, Ann. Biomed. Eng. 33, 2, 214–222. [CrossRef] [PubMed]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.