- Bork O., Schlueter M., Raebiger N. (2005) The impact of local phenomena on mass transfer in gas-liquid systems, Can. J. Chem. Eng. 83, 4, 658–666. [CrossRef] [Google Scholar]
- Vasconcelos J.M.T., Orvalho S.P., Alves S.S. (2002) Gas-liquid mass transfer to single bubbles: effect of surface contamination, AIChE J. 48, 6, 1145–1154. [CrossRef] [Google Scholar]
- Vasconcelos J., Rodrigues J., Orvalho S., Alves S., Mendes R., Reis A. (2003) Effect of contaminants on mass transfer coefficients in bubble column and airlift contactors, Chem. Eng. Sci. 58, 8, 1431–1440. [CrossRef] [Google Scholar]
- Painmanakul P., Loubière K., Hébrard G., Mietton-Peuchot M., Roustan M. (2005) Effect of surfactants on liquid-side mass transfer coefficients, Chem. Eng. Sci. 60, 22, 6480–6491. [CrossRef] [Google Scholar]
- Hebrard G., Zeng J., Loubiere K. (2009) Effect of surfactants on liquid side mass transfer coefficients: a new insight, Chem. Eng. J. 148, 1, 132–138. [CrossRef] [Google Scholar]
- Sardeing R., Painmanakul P., Hébrard G. (2006) Effect of surfactants on liquid-side mass transfer coefficients in gas-liquid systems: a first step to modeling, Chem. Eng. Sci. 61, 19, 6249–6260. [CrossRef] [Google Scholar]
- Ferreira A., Cardoso P., Teixeira J.A., Rocha F. (2013) pH influence on oxygen mass transfer coefficient in a bubble column. Individual characterization of kL and a, Chem. Eng. Sci. 100, 145–152. [CrossRef] [Google Scholar]
- Dani A., Guiraud P., Cockx A. (2007) Local measurement of oxygen transfer around a single bubble by planar laser-induced fluorescence, Chem. Eng. Sci. 62, 24, 7245–7252. [CrossRef] [Google Scholar]
- Kück U.D., Schlüter M., Räbiger N. (2012) Local measurement of mass transfer rate of a single bubble with and without a chemical reaction, J. Chem. Eng. Jpn 45, 708–712. [Google Scholar]
- Dietrich N., Francois J., Jimenez M., Cockx A., Guiraud P., Hébrard G. (2015) Fast measurements of the gas-liquid diffusion coefficient in the Gaussian wake of a spherical bubble, Chem. Eng. Technol. 38, 5, 941–946. [CrossRef] [Google Scholar]
- Jimenez M., Dietrich N., Grace J.R., Hebrard G. (2014) Oxygen mass transfer and hydrodynamic behaviour in wastewater: determination of local impact of surfactants by visualization techniques, Water Res. 58, 111–121. [CrossRef] [PubMed] [Google Scholar]
- Khinast J.G., Koynov A.A., Leib T.M. (2003) Reactive mass transfer at gas-liquid interfaces: impact of micro-scale fluid dynamics on yield and selectivity of liquid-phase cyclohexane oxidation, Chem. Eng. Sci. 58, 17, 3961–3971. [CrossRef] [Google Scholar]
- Aboulhasanzadeh B., Hosoda S., Tomiyama A., Tryggvason G. (2013) A validation of an embedded analytical description approach for the computations of high Schmidt number mass transfer from bubbles in liquids, Chem. Eng. Sci. 101, 165–174. [CrossRef] [Google Scholar]
- Aboulhasanzadeh B., Thomas S., Taeibi-Rahni M., Tryggvason G. (2012) Multiscale computations of mass transfer from buoyant bubbles, Chem. Eng. Sci. 75, 456–467. [CrossRef] [Google Scholar]
- Bothe D., Koebe M., Wielage K., Prüss J., Warnecke H.-J. (2004) Direct numerical simulation of mass transfer between rising gas bubbles and water, in: M. Sommerfeld (ed.), Bubbly Flows: Analysis, Modelling and Calculation, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 159–174. [CrossRef] [Google Scholar]
- Bothe D., Koebe M., Wielage K., Warnecke H.-J. (2003) VOF-simulations of mass transfer from single bubbles and bubble chains rising in aqueous solutions, ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference, 6-10 July, Honolulu, Hawaii, USA, Vol. 2: Symposia, Parts A, B, and C, Paper No. FEDSM2003-45155, pp. 423–429. [Google Scholar]
- Koynov A., Khinast J.G. (2004) Effects of hydrodynamics and Lagrangian transport on chemically reacting bubble flows, Chem. Eng. Sci. 59, 18, 3907–3927. [CrossRef] [Google Scholar]
- Koynov A., Khinast J.G., Tryggvason G. (2005) Mass transfer and chemical reactions in bubble swarms with dynamic interfaces, AIChE J. 51, 10, 2786–2800. [CrossRef] [Google Scholar]
- Fleischer C., Becker S., Eigenberger G. (1996) Detailed modeling of the chemisorption of CO2 into NaOH in a bubble column, Chem. Eng. Sci. 51, 10, 1715–1724. [CrossRef] [Google Scholar]
- Darmana D., Deen N., Kuipers J. (2005) Detailed modeling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model, Chem. Eng. Sci. 60, 12, 3383–3404. [CrossRef] [Google Scholar]
- Darmana D., Henket R., Deen N., Kuipers J. (2007) Detailed modelling of hydrodynamics, mass transfer and chemical reactions in a bubble column using a discrete bubble model: chemisorption of CO2 into NaOH solution, numerical and experimental study, Chem. Eng. Sci. 62, 9, 2556–2575. [CrossRef] [Google Scholar]
- Houghton W.T. (1966) Mass transfer with chemical reaction from single spheres, PhD Thesis, McMaster University, Hamilton, Ontario. [Google Scholar]
- Wylock C., Dehaeck S., Cartage T., Colinet P., Haut B. (2011) Experimental study of gas-liquid mass transfer coupled with chemical reactions by digital holographic interferometry, Chem. Eng. Sci. 66, 14, 3400–3412. [CrossRef] [Google Scholar]
- Stone J.R., Marletta M.A. (1994) Soluble guanylate cyclase from bovine lung: activation with nitric oxide and carbon monoxide and spectral characterization of the ferrous and ferric states, Biochemistry 33, 18, 5636–5640. [CrossRef] [PubMed] [Google Scholar]
- Blaesi E.J., Gardner J.D., Fox B.G., Brunold T.C. (2013) Spectroscopic and computational characterization of the NO adduct of substrate-bound Fe(II) cysteine dioxygenase: insights into the mechanism of O2 activation, Biochemistry 52, 35, 6040–6051. [CrossRef] [PubMed] [Google Scholar]
- Ignarro L.J. (1999) Nitric oxide: a unique endogenous signaling molecule in vascular biology (nobel lecture), Angew. Chem. Int. Ed. 38, 13-14, 1882–1892. [CrossRef] [Google Scholar]
- Harrop T.C. (2015) Chapter Five – New insights on {FeNO}n (n = 7, 8) systems as enzyme models and HNO donors Adv. Inorg. Chem. 67, 243–263. [CrossRef] [Google Scholar]
- Franke A., van Eldik R. (2013) Factors that determine the mechanism of NO activation by metal complexes of biological and environmental relevance, Eur. J. Inorg. Chem. 2013, 4, 460–480. [CrossRef] [Google Scholar]
- Schneppensieper T., Wanat A., Stochel G., van Eldik R. (2002) Mechanistic information on the reversible binding of NO to selected iron(II) chelates from activation parameters, Inorg. Chem. 41, 9, 2565–2573. [CrossRef] [PubMed] [Google Scholar]
- Schneppensieper T., Wanat A., Stochel G., Goldstein S., Meyerstein D., van Eldik R. (2001) Ligand effects on the kinetics of the reversible binding of NO to selected aminocarboxylato complexes of iron(II) in aqueous solution, Eur. J. Inorg. Chem. 2001, 9, 2317–2325. [CrossRef] [Google Scholar]
- Xia Y., Zhao J., Li M., Zhang S., Li S., Li W. (2016) Bioelectrochemical reduction of Fe(II)EDTA-NO in a biofilm electrode reactor: performance, mechanism, and kinetics, Environ. Sci. Technol. 50, 7, 3846–3851. [CrossRef] [PubMed] [Google Scholar]
- Li W., Zhao J., Zhang L., Xia Y., Liu N., Li S., Zhang S. (2016) Pathway of FeEDTA transformation and its impact on performance of NOx removal in a chemical absorption-biological reduction integrated process, Sci. Rep. 6, 18876. [CrossRef] [PubMed] [Google Scholar]
- Chen J., Wang L., Zheng J., Chen J. (2015) N2O production in the Fe(II)(EDTA)-NO reduction process: the effects of carbon source and pH, Bioprocess Biosyst. Eng. 38, 7, 1373–1380. [CrossRef] [PubMed] [Google Scholar]
- Zhang S., Chen H., Xia Y., Liu N., Lu B.-H., Li W. (2014) Current advances of integrated processes combining chemical absorption and biological reduction for NOx removal from flue gas, Appl. Microbiol. Biotechnol. 98, 20, 8497–8512. [CrossRef] [PubMed] [Google Scholar]
- de Salas C., Heinrich M.R. (2014) Fixation and recycling of nitrogen monoxide through carbonitrosation reactions, Green Chem. 16, 6, 2982. [CrossRef] [Google Scholar]
- Liu N., Jiang Y., Zhang L., Xia Y., Lu B., Xu B., Li W., Li S. (2014) Evaluation of NOx removal from flue gas by a chemical absorption – biological reduction integrated system: glucose consumption and utilization pathways, Energy Fuels 28, 12, 7591–7598. [CrossRef] [Google Scholar]
- Xia Y., Shi Y., Zhou Y., Liu N., Li W., Li S. (2014) A new approach for NOx removal from flue gas using a biofilm electrode reactor coupled with chemical absorption, Energy Fuels 28, 5, 3332–3338. [CrossRef] [Google Scholar]
- Niu H., Leung D. (2010) A review on the removal of nitrogen oxides from polluted flow by bioreactors, Environ. Rev. 18, NA, 175–189. [CrossRef] [Google Scholar]
- van der Maas P., Harmsen L., Weelink S., Klapwijk B., Lens P. (2004) Denitrification in aqueous FeEDTA solutions, J. Chem. Technol. Biotechnol. 79, 8, 835–841. [CrossRef] [Google Scholar]
- Sander R. (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent, Atmos. Chem. Phys. 15, 8, 4399–4981. [Google Scholar]
- Wolf M., Kluefers P. (2016) Structure and bonding of high-spin nitrosyl-iron(II) compounds with mixed N,O-chelators and aqua ligands, Eur. J. Inorg. Chem., DOI: 10.1002/ejic.201601329. [Google Scholar]
- Aas B., Kluefers P. (2016) The structural chemistry of stable high-spin nitrosyl-iron(II) compounds with aminecarboxylato co-ligands in aqueous solution, Eur. J. Inorg. Chem., DOI: 10.1002/ejic.201601330. [Google Scholar]
- Simon M. (2015) Koaleszenz von Tropfen und Tropfenschwärmen, PhD Thesis, University of Kaiserslautern, Kaiserslautern, Germany. [Google Scholar]
- Li H., Fang W. (1988) Kinetics of absorption of nitric oxide in aqueous iron(II)-EDTA solution, Ind. Eng. Chem. Res. 27, 5, 770–774. [CrossRef] [Google Scholar]
- Gambardella F., Alberts M.S., Winkelman J.G.M., Heeres E.J. (2005) Experimental and modeling studies on the absorption of NO in aqueous ferrous EDTA solutions, Ind. Eng. Chem. Res. 44, 12, 4234–4242. [CrossRef] [Google Scholar]
- Zacharia I.G., Deen W.M. (2005) Diffusivity and solubility of nitric oxide in water and saline, Ann. Biomed. Eng. 33, 2, 214–222. [CrossRef] [PubMed] [Google Scholar]
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 2, March–April 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
|
|
---|---|---|
Article Number | 11 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.2516/ogst/2017006 | |
Published online | 20 March 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.