- Grospellier G., Lelandais B. (2009) The arcane development framework, Proc. of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ‘09, ACM, New York, NY, USA, pp. 4:1–4:11, ISBN: 978-1-60558-547-5. [Google Scholar]
- Niebler E. (2011) Boost::proto documentation. Available at http://www.boost.org/doc/libs/1_47_0/doc/html/proto.html [Google Scholar]
- Di Pietro D.A., Gratien J.-M., Prud’homme C. (2013) A domain specific embedded language in C++ for lowest-order methods for diffusive problem on general meshes, BIT Numer. Math. 53, 111–152. [CrossRef] [MathSciNet] [Google Scholar]
- Gratien J.-M. (2012) Implementing a domain specific embedded language for lowest-order variational methods with Boost Proto, Available at http://hal.archives-ouvertes.fr/hal-00788281. [Google Scholar]
- Gratien J.-M. (2013) An abstract object oriented runtime system for heterogeneous parallel architecture, Available at https://hal-ifp.archives-ouvertes.fr/hal-00788293. Working paper or preprint. [Google Scholar]
- Di Pietro D.A., Gratien J.-M. (2011) Lowest order methods for diffusive problems on general meshes: a unified approach to definition and implementation, FVCA6 Proc., Available at http://hal.archives-ouvertes.fr/hal-00562500/fr/. [Google Scholar]
- Brezzi F., Lipnikov K., Shashkov M. (2005) Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43, 1872–1896. [Google Scholar]
- Brezzi F., Lipnikov K., Simoncini V. (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15, 1533–1553. [Google Scholar]
- Droniou J., Eymard R., Gallouet T., Herbin R. (2010) A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci. 20, 2, 265–295. [CrossRef] [MathSciNet] [Google Scholar]
- Eymard R., Gallouet Th., Herbin R. (2010) Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30, 1009–1043. [CrossRef] [MathSciNet] [Google Scholar]
- Agélas L., Di Pietro D.A., Droniou J. (2010) The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal. 44, 4, 597–625. [CrossRef] [EDP Sciences] [MathSciNet] [Google Scholar]
- Di Pietro D.A. (2010) Cell-centered Galerkin methods, C. R. Math. Acad. Sci. Paris 348, 31–34. [CrossRef] [MathSciNet] [Google Scholar]
- Di Pietro D.A. (2011) A compact cell-centered Galerkin method with subgrid stabilization, C. R. Acad. Sci. Paris, Ser. I. 348, 1-2, 93–98. [CrossRef] [Google Scholar]
- Lemaire S. (2013) Nonconforming discretizations of a poromechanical model on general meshes. PhD Report, Available at http://www.theses.fr/2013PEST1168/document [Google Scholar]
- Di Pietro D.A. (2012) Cell centered Galerkin methods for diffusive problems, M2AN Math. Model. Numer. Anal. 46, 6, 111–144. [CrossRef] [EDP Sciences] [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 2, March–April 2017
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
|
|
---|---|---|
Numéro d'article | 12 | |
Nombre de pages | 11 | |
DOI | https://doi.org/10.2516/ogst/2017007 | |
Publié en ligne | 5 avril 2017 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.