- Vorländer D., Walter R. (1925) The mechanically produced double refraction of amorphous liquids and its connection with molecular form, Z. Phys. Chem. 118, 1–30. [CrossRef] [Google Scholar]
- Sadron C. (1936) Sur la birefringence dynamique des liquides purs, J. Phys. Radium 7, 263–269. [CrossRef] [EDP Sciences] [Google Scholar]
- Champion J.V., North P.F. (1968) Variation of flow birefringence with temperature in some liquid n-alkanes, Trans. Faraday Soc. 64, 238–733. [CrossRef] [Google Scholar]
- Cates M.E., Milner S.T. (1989) Role of shear in the isotropic-to-lamellar transition, Phys. Rev. Lett. 62, 1856–1859. [CrossRef] [PubMed] [Google Scholar]
- Schmitt V., Lequeux F., Pousse A., Roux D. (1994) Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers, Langmuir 10, 955–961. [Google Scholar]
- Berret J.F., Roux D.C., Porte G., Lindner P. (1994) Shear-induced isotropic-to-nematic phase transition in equilibrium polymers, Europhys. Lett. 25, 521–526. [Google Scholar]
- Decruppe J.P., Cressely R., Makhloufi R., Cappelaere E. (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution, Colloid Polym. Sci. 273, 346–351. [Google Scholar]
- Olmsted P.D., Lu C.-Y.D. (1997) Coexistence and phase separation in sheared complex fluids, Phys. Rev. E 56, 55–4415. [Google Scholar]
- Cates M.E., Fielding S.M. (2006) Rheology of giant micelles, Adv. Phys. 55, 799–879. [Google Scholar]
- Hess S. (1976) Flow alignment and flow-induced phase transition in liquid crystals, Z. Naturforsch. A 31, 1507–1513. [Google Scholar]
- Olmsted P.D., Goldbart P.M. (1990) Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow, Phys. Rev. A 41, 4578–4581. [CrossRef] [PubMed] [Google Scholar]
- Pujolle-Robic C., Noirez L. (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers, Nature 409, 167–171. [CrossRef] [PubMed] [Google Scholar]
- Reys V., Dormoy Y., Gallani J.L., Martinoty P., Le Barny P., Dubois J.C. (1988) Short-range-order effects in the isotropic phase of a side-chain polymeric liquid crystal, Phys. Rev. Lett. 61, 2340–2343. [PubMed] [Google Scholar]
- Noirez L., Baroni P., Mendil-Jakani H. (2009) The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers, Polymer International 58, 962–968. [Google Scholar]
- Noirez L., Baroni P. (2010) Revealing the solid-like nature of glycerol at ambient temperature, J. Mol. Struct. 972, 16–21. [Google Scholar]
- Noirez L., Mendil-Jakani H., Baroni P. (2011) Identification of finite shear-elasticity in the liquid state of molecular (OTP) and polymeric glass formers (PBuA), Philos. Mag. 91, 1977–1986. [CrossRef] [Google Scholar]
- Mendil H., Baroni P., Grillot I., Noirez L. (2006) Frozen states in the isotropic phase of liquid-crystal polymers, Phys. Rev. Lett. 96, 077801–3. [PubMed] [Google Scholar]
- Noirez L., Baroni P. (2012) Identification of a low-frequency elastic behaviour in liquid water, J. Phys.: Condens. Matter 24, 372101–6. [CrossRef] [Google Scholar]
- Kahl P., Baroni P., Noirez L. (2013) Hidden solidlike properties in the isotropic phase of the 8CB liquid crystal, Phys. Rev. E 88, 50501–5. [Google Scholar]
- Noirez L. (2005) Origin of shear-induced phase transitions in melts of liquid-crystal polymers, Phys. Rev. E 72, 051701–5. [Google Scholar]
- Mendil H., Baroni P., Noirez L. (2005) Unexpected giant elasticity in side-chain liquid crystal polymer melts: a new approach for the understanding of shear induced phase transitions, Europhys. Lett. 72, 982–989. [Google Scholar]
- Hertel G., Hoffmann H. (1988) Lyotropic nematic phases of double chain surfactants, Prog. Colloid. Polym. Sci. 76, 123–131. [Google Scholar]
- Mendil-Jakani H., Baroni P., Noirez L. (2009) Shear-induced isotropic to nematic transition of liquid-crystal polymers: identification of gap thickness and slipping effects, Langmuir 25, 9, 5248–5252. [PubMed] [Google Scholar]
- Noirez L., Baroni P., Cao H. (2012) Identification of shear elasticity at low frequency in liquid n-heptadecane, liquid water and RT-ionic liquids [emim][Tf2N], J. Mol. Liq. 176, 71–1986. [Google Scholar]
- Mendil H., Baroni P., Baroni P. (2006) Solid-like rheological response of non-entangled polymers in the molten state, Eur. Phys. J. E 19, 77–87. [CrossRef] [EDP Sciences] [Google Scholar]
- Noirez L., Mendil-Jakani H., Baroni P. (2009) New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts, Macromol. Rapid Commun. 30, 1709–1714. [CrossRef] [PubMed] [Google Scholar]
- Metivier C., Rharbi Y., Magnin A., Bou Abboud A. (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls, Soft Matt. 8, 7365–7367. [CrossRef] [Google Scholar]
- Chennevière A., Drockenmuller E., Damiron D., Cousin F., Boué F., Restagno F., Léger L. (2013) Quantitative analysis of interdigitation kinetics between a polymer melt and a polymer brush, Macromol. 46, 6955–6962. [Google Scholar]
- Heidenreich S., Ilg P., Hess S. (2007) Boundary conditions for fluids with internal orientational degrees of freedom: apparent velocity slip associated with the molecular alignment, Phys. Rev. E 75, 66302–13. [Google Scholar]
- Zaccone A., Blundell J.R., Terentjev E. (2011) Network disorder and nonaffine deformations in marginal solids, Phys. Rev. B 84, 174119–174211. [Google Scholar]
- Smallenburg F., Fillion L., Sciortoni F. (2014) Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles, Nat. Phys. 10, 653–657. [CrossRef] [PubMed] [Google Scholar]
- Schoen M., Hess S., Diestler D.J. (1995) Rheological properties of confined thin films, Phys. Rev. E 52, 2587–2602. [Google Scholar]
- Volino F. (1997) Théorie visco-élastique non-extensive, Ann. Phys. Fr. 22, 181–231. [CrossRef] [EDP Sciences] [Google Scholar]
- Manning M.L., Foty R.A., Steinberg M.S., Schoetz E.-M. (2010) Coaction of intercellular adhesion and cortical tension specifies tissue surface tension, PNAS 107, 12517–12522. [CrossRef] [Google Scholar]
- Kahl P., Baroni P., Noirez L. (2016) Bringing to light hidden elasticity in the liquid state using in-situ pretransitional liquid crystal swarms, PLoS One 11, 2, e0147914. [PubMed] [Google Scholar]
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Numéro 2, March–April 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
|
|
---|---|---|
Numéro d'article | 10 | |
Nombre de pages | 7 | |
DOI | https://doi.org/10.2516/ogst/2017005 | |
Publié en ligne | 17 mars 2017 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.