Dossier: Quantitative Methods in Reservoir Characterization
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Number 2, March-April 2007
Dossier: Quantitative Methods in Reservoir Characterization
Page(s) 155 - 167
DOI https://doi.org/10.2516/ogst:2007014
Published online 14 June 2007
  • Sivia, D.S. (1996) Data Analysis - A Bayesian Tutorial, Claredon Press, Oxford. [Google Scholar]
  • Lépine, O.J. et al. (1999) Uncertainty Analysis in Predictive Reservoir Simulation Using Gradient Information, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 57594. [Google Scholar]
  • Liu, N. and Oliver, D.S. (2004) Experimental Assessment of Gradual Deformation Method. Math. Geol., 36, 65. [Google Scholar]
  • Feraille,M. and Roggero, F. (2004) Uncertainty Quantification forMature Field Combining the Bayesian Inversion Formalism and Experimental Design Approach, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
  • Manceau, E., Mezghani, M., Zabalza-Mezghani, I. and Roggero, F. (2001) Combination of Experimental Design and Joint Modeling Methods for Quantifying the Risk Associated with Deterministic and Stochastic Uncertainties - An Integrated Test Study, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 71620. [Google Scholar]
  • Romero, C.E., Carter, J.N., Gringarten, A.C. and Zimmerman, R.W. (2000) AModified Genetic Algorithm for Reservoir Characterisation. SPE International Oil and Gas Conference and Exhibition in China, Beijing, China, number 64765. [Google Scholar]
  • Williams, G.J.J., Mansfield, M., MacDonald, D.G. and Bush, M.D. (2004) Top-Down Reservoir Modelling, SPE Annual Technical Conference and Exhibition, Houston, Texas, number 89974. [Google Scholar]
  • Schulze-Riegert, R.W., Haase, O. and Nekrassov, A. (2003) Combined Global and Local Optimization Techniques Applied to History Matching, SPE Reservoir Simulation Symposium, Houston, Texas, number 79668. [Google Scholar]
  • Sen,M.K. et al. (1995) Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm, SPE Annual Technical Conference and Exhibition, Washington, US, number 24754. [Google Scholar]
  • Subbey, S., Christie,M. and Sambridge,M. (2002) Uncertainty Reduction in Reservoir Modelling, Contemp. Math., 295, 457–467. [Google Scholar]
  • Litvak, M., Christie, M., Johnson, D. and Sambridge, M. (February 2005) Uncertainty Estimation in Production Predictions Constrained by Production History and Time-Lapse Seismic in a GOM Oil Field, SPE Reservoir Simulation Symposium, Houston, Texas, number 93146. [Google Scholar]
  • Demyanov, V., Subbey, S. and Christie, M. (2004) Uncertainty Assessment in PUNQ-S3 - Neighbourhood Algorithm Framework for Geostatistical Modelling, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
  • Castellini, A., Landa, J.L. and Kikani, J. (2004) Practical Methods for Uncertainty Assessment of Flow Predictions for Reservoirs with Significant History - A Field Case Study, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
  • Mantica, S., Cominelli, A. and Mantica, G. (2001) Combining Global and Local Optimization Techniques for Automatic HistoryMatching Production and Seismic Data, SPE Reservoir Simulation Symposium, Houston, Texas, number 66355. [Google Scholar]
  • Floris, F.J.T. et al. (2001) Methods for Quantifying the Uncertainty of Production Forecasts: A Comparative Study. Petrol. Geosci., 7, S87. [Google Scholar]
  • Liu, N., Betancourt, S. and Oliver, D.S. (2001) Assessment of Uncertainty Assessment Methods, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 71624. [Google Scholar]
  • Tavasoli, Z., Carter, J.N. and King, P.R. (2004) Errors in History Matching. SPE J., 86883. [Google Scholar]
  • Ballester, P.J. and Carter, J.N. (2003) Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions in Multimodal Optimization, GECCO-03: Proceedings of the Genetic and Evolutionary Computation Conference. [Google Scholar]
  • Goldberg, D.E. (1989) Genetic Algortihms in Search, Optimisation and Machine Learning, Addison-Wesley Publishing Company Inc., Reading, Massachusetts. [Google Scholar]
  • Erbas, D. (2006) Sampling Strategies for Uncertainty Quantification in Oil Recovery Prediction. PhD. Thesis, Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK. [Google Scholar]
  • Valenzuela-Rendon, M. and Uresti-Charre, E. (1997) A Non- Generational Genetic Algorithm for Multiobjective Optimization, Proceedings of the 7th International Conference on Genetic Algorithms. [Google Scholar]
  • Sambridge, M. (1999) Geophysical Inversion with a Neighbourhood Algorithm - I. Searching a Parameter Space. Geophys. J. Int., 138, 479. [Google Scholar]
  • Okabe, A., Boots, B. and Sugihara, K. (1992) Spatial Tessellations- Concepts and Applications of Voronoi diagrams, John Wiley & Sons, England. [Google Scholar]
  • Sambridge, M. (1999) Geophysical Inversion with a Neighbourhood Algorithm – II. Appraising the Ensemble. Geophys. J. Int., 138, 727. [Google Scholar]
  • Carter, J., Ballester, P.J., Tavasoli, Z. and King, P.R. (2004) Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry, Proceedings of the SAMO Conference. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.