- Sivia, D.S. (1996) Data Analysis - A Bayesian Tutorial, Claredon Press, Oxford. [Google Scholar]
- Lépine, O.J. et al. (1999) Uncertainty Analysis in Predictive Reservoir Simulation Using Gradient Information, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 57594. [Google Scholar]
- Liu, N. and Oliver, D.S. (2004) Experimental Assessment of Gradual Deformation Method. Math. Geol., 36, 65. [Google Scholar]
- Feraille,M. and Roggero, F. (2004) Uncertainty Quantification forMature Field Combining the Bayesian Inversion Formalism and Experimental Design Approach, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
- Manceau, E., Mezghani, M., Zabalza-Mezghani, I. and Roggero, F. (2001) Combination of Experimental Design and Joint Modeling Methods for Quantifying the Risk Associated with Deterministic and Stochastic Uncertainties - An Integrated Test Study, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 71620. [Google Scholar]
- Romero, C.E., Carter, J.N., Gringarten, A.C. and Zimmerman, R.W. (2000) AModified Genetic Algorithm for Reservoir Characterisation. SPE International Oil and Gas Conference and Exhibition in China, Beijing, China, number 64765. [Google Scholar]
- Williams, G.J.J., Mansfield, M., MacDonald, D.G. and Bush, M.D. (2004) Top-Down Reservoir Modelling, SPE Annual Technical Conference and Exhibition, Houston, Texas, number 89974. [Google Scholar]
- Schulze-Riegert, R.W., Haase, O. and Nekrassov, A. (2003) Combined Global and Local Optimization Techniques Applied to History Matching, SPE Reservoir Simulation Symposium, Houston, Texas, number 79668. [Google Scholar]
- Sen,M.K. et al. (1995) Stochastic Reservoir Modeling Using Simulated Annealing and Genetic Algorithm, SPE Annual Technical Conference and Exhibition, Washington, US, number 24754. [Google Scholar]
- Subbey, S., Christie,M. and Sambridge,M. (2002) Uncertainty Reduction in Reservoir Modelling, Contemp. Math., 295, 457–467. [Google Scholar]
- Litvak, M., Christie, M., Johnson, D. and Sambridge, M. (February 2005) Uncertainty Estimation in Production Predictions Constrained by Production History and Time-Lapse Seismic in a GOM Oil Field, SPE Reservoir Simulation Symposium, Houston, Texas, number 93146. [Google Scholar]
- Demyanov, V., Subbey, S. and Christie, M. (2004) Uncertainty Assessment in PUNQ-S3 - Neighbourhood Algorithm Framework for Geostatistical Modelling, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
- Castellini, A., Landa, J.L. and Kikani, J. (2004) Practical Methods for Uncertainty Assessment of Flow Predictions for Reservoirs with Significant History - A Field Case Study, 9th European Conference on the Mathematics of Oil Recovery, Cannes, France. [Google Scholar]
- Mantica, S., Cominelli, A. and Mantica, G. (2001) Combining Global and Local Optimization Techniques for Automatic HistoryMatching Production and Seismic Data, SPE Reservoir Simulation Symposium, Houston, Texas, number 66355. [Google Scholar]
- Floris, F.J.T. et al. (2001) Methods for Quantifying the Uncertainty of Production Forecasts: A Comparative Study. Petrol. Geosci., 7, S87. [Google Scholar]
- Liu, N., Betancourt, S. and Oliver, D.S. (2001) Assessment of Uncertainty Assessment Methods, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, number 71624. [Google Scholar]
- Tavasoli, Z., Carter, J.N. and King, P.R. (2004) Errors in History Matching. SPE J., 86883. [Google Scholar]
- Ballester, P.J. and Carter, J.N. (2003) Real-Parameter Genetic Algorithms for Finding Multiple Optimal Solutions in Multimodal Optimization, GECCO-03: Proceedings of the Genetic and Evolutionary Computation Conference. [Google Scholar]
- Goldberg, D.E. (1989) Genetic Algortihms in Search, Optimisation and Machine Learning, Addison-Wesley Publishing Company Inc., Reading, Massachusetts. [Google Scholar]
- Erbas, D. (2006) Sampling Strategies for Uncertainty Quantification in Oil Recovery Prediction. PhD. Thesis, Institute of Petroleum Engineering, Heriot Watt University, Edinburgh, UK. [Google Scholar]
- Valenzuela-Rendon, M. and Uresti-Charre, E. (1997) A Non- Generational Genetic Algorithm for Multiobjective Optimization, Proceedings of the 7th International Conference on Genetic Algorithms. [Google Scholar]
- Sambridge, M. (1999) Geophysical Inversion with a Neighbourhood Algorithm - I. Searching a Parameter Space. Geophys. J. Int., 138, 479. [Google Scholar]
- Okabe, A., Boots, B. and Sugihara, K. (1992) Spatial Tessellations- Concepts and Applications of Voronoi diagrams, John Wiley & Sons, England. [Google Scholar]
- Sambridge, M. (1999) Geophysical Inversion with a Neighbourhood Algorithm – II. Appraising the Ensemble. Geophys. J. Int., 138, 727. [Google Scholar]
- Carter, J., Ballester, P.J., Tavasoli, Z. and King, P.R. (2004) Our Calibrated Model has No Predictive Value: An Example from the Petroleum Industry, Proceedings of the SAMO Conference. [Google Scholar]
Numéro |
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Numéro 2, March-April 2007
Dossier: Quantitative Methods in Reservoir Characterization
|
|
---|---|---|
Page(s) | 155 - 167 | |
DOI | https://doi.org/10.2516/ogst:2007014 | |
Publié en ligne | 14 juin 2007 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.