Dossier: Quantitative Methods in Reservoir Characterization
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 62, Number 2, March-April 2007
Dossier: Quantitative Methods in Reservoir Characterization
Page(s) 169 - 180
Published online 14 June 2007
  • Brac, J., Déquirez, P.Y., Herve, F., Jacques, C., Lailly, P., Richard, V. and Van Nieuh, D.T. (1988) Inversion with a priori information: An approach to integrated stratigraphic interpretation, 58th Ann.Internat. Mtg, SEG, Expanded Abstracts, 841-844. [Google Scholar]
  • Chilès, J.-P., and Delfiner, P. (1999) Geostatistics – Modeling spatial uncertainty, Wiley series in Probability and Statistics. [Google Scholar]
  • Gomez-Hernandez, J.J.,Sahuquillo, A., and Capilla, J.E. (1997) Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data. 1. Theory. J. Hydrol., 203, 162-174. [CrossRef] [Google Scholar]
  • Goovaerts, P. (1997) Geostatistics for natural resources evaluation, Oxford University Press, New York, USA. [Google Scholar]
  • Hu, L.Y. (2000a) Gradual deformation and iterative calibration of Gaussian-related stochastic models. Math. Geol., 32, 87-108. [Google Scholar]
  • Hu, L.Y. (2000b) Gradual deformation of non-Gaussian stochastic simulations, in Geostatistics 2000 Cape Town, W.J. Kleingeld and O.G. Krige (eds.). [Google Scholar]
  • Hu, L.Y., and LeRavalec-Dupin, M. (2004) An improved gradual deformation method for reconciling random and gradient searches in stochastic optimizations. Math. Geol., 36, 703-719. [Google Scholar]
  • Hu, L.Y.,Blanc, G., and Nœtinger, B. (1999) Gradual deformation and iterative calibration of sequential stochastic simulations, 5th Ann. Conf. Int. Ass. Math. Geol., Trondheim, Norway, 6-11 August, 2, 493-498. [Google Scholar]
  • Langlais, V., Mezghani, M., Lucet, N., and Huguet, F. (2005) 4D Monitoring of an Underground Gas Storage Case Using an Integrated History Matching Technique, SPE Ann. Tech. Conf. Exhib, SPE 95838. [Google Scholar]
  • Le Ravalec, M., Nœtinger, B., and Hu, L.- Y. (2000) The FFT moving average (FFT-MA) generator: an efficient numerical method for generating and conditioning Gaussian simulations. Math. Geol., 32, 701-723. [Google Scholar]
  • Le Ravalec, M., Hu, L.-Y. and Noetinger, B. (2001) Stochastic Reservoir modeling constrained to dynamic data: local calibration and inference of the structural parameters. SPE J., 25-31. [Google Scholar]
  • Le Ravalec-Dupin, M. (2005) Inverse stochastic modeling of flow in porous media – Application to reservoir characterization, Editions Technip, ISBN 2-7108-0864-1. [Google Scholar]
  • Le Ravalec-Dupin, M., and Hu, L.-Y. (2004) Gradual deformation of boolean simulations, 7th Int. Geostat. Congress, Banff, Alberta, Canada, 26 Sept.-1 Oct. [Google Scholar]
  • LeRavalec-Dupin, M.,Nœtinger, B.,Hu, L.-Y., and Blanc, G. (2001) Conditioning to dynamic data: An improved zonation approach. Petrol. Geosci., 7, S9-S16. [CrossRef] [Google Scholar]
  • Marsily, G. de (1978) De l'identification des systèmes hydrologiques, PhD Thesis, Université Paris VI. [Google Scholar]
  • Marsily, G. de, Delhomme, J.P., Coudrain-Ribstein, A., and Lavenue, A.M. (2000) Four decades of inverse problems in hydrogeology, Geophys. Soc. Am., Special paper 348. [Google Scholar]
  • Neuman, S.P. (1973) Calibration of distributed parameter groundwater flow models viewed as a multi-objective decision process under uncertainty. Water Resour. Res., 9, 1006-1021. [Google Scholar]
  • RamaRao, B.S.,LaVenue, A.M., de Marsilly, G., and Marietta, M.G. (1995) Pilot point methodology for automated calibration of an ensemble of conditionally simulated transmissivity fields. 1. Theory and computational experiments. Water Resour. Res., 31, 475-493. [Google Scholar]
  • Roggero, F., and Hu, L.-Y. (1998) Gradual deformation of continuous geostatistical models for history matching, SPE Ann. Tech. Conf. Exhib, New Orleans, LA, SPE 49004. [Google Scholar]
  • Sun, N.-Z. (1994) Inverse problems in groundwater modeling, Kluwer Acad. Publ., Dordrecht, The Netherlands. [Google Scholar]
  • Stallman, R.W. (1956) Numerical analysis of regional water levels to define aquifer hydrology. Trans. AGU, 37, 451-460. [CrossRef] [MathSciNet] [Google Scholar]
  • Tarantola, A. (1987) Inverse problem theory – Methods for data fitting and model parameter estimation, Elsevier Science Publishers, Amsterdam, The Netherlands. [Google Scholar]
  • Tonellot, T. (1999) Prestack elastic waveform inversion using a priori information, 69th Ann. Internat. Mtg, SEG, Expanded Abstracts. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.