- Chen Q.S., Wegrzyn J., Prasad V. (2004) Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks, Cryogenics 44, 701–709. [Google Scholar]
- Ren J., Zhang H., Bi M., Yu J., Sun S. (2017) Numerical investigation of the coupled heat transfer of liquefied gas storage tanks, Int. J. Hydrogen Energy 42, 24222–24228. [Google Scholar]
- Zellouf Y., Portannier B. (2011) First step in optimizing LNG storages for offshore terminals, J. Nat. Gas Sci. Eng. 3, 582–590. [Google Scholar]
- Lemembre A., Petit J.P. (1998) Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure, Int. J. Heat Mass Trans. 41, 2437–2454. [CrossRef] [Google Scholar]
- Papanicolaou E., Belessiotis V. (2002) Transient natural convection in a cylindrical enclosure at high Rayleigh, Int. J. Heat Mass Trans. 45, 1425–1444. [CrossRef] [Google Scholar]
- Ginestet S., Le Bot C. (2018) Evaporation flow assessment from petroleum product storage tanks exposed to fire conditions, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 27. [CrossRef] [Google Scholar]
- Daney D.E. (1976) Turbulent natural convection of liquid deuterium, hydrogen and nitrogen within enclosed vessels, Int. J. Heat Mass Trans. 19, 431–441. [CrossRef] [Google Scholar]
- Evans L.B., Reid R.C. (1968) Transient natural convection in vertical cylinder, AIChE J. 14, 251–259. [Google Scholar]
- Liang S.F., Vidal A., Acrivos A. (1969) Buoyancy-driven convection in cylindrical geometries, J. Fluid Mech. 36, 239–256. [Google Scholar]
- Mallinson G.D., Davis G.D.V. (1977) Three-dimensional natural convection in a box: A numerical study, J. Fluid Mech. 83, 11–38. [Google Scholar]
- Lee H.S., Jung J.H., Yoon H.S. (2013) A numerical study of three dimensional natural convection in a differentially heated cubical enclosure, Proceedings of the 2013 International Conference on Mechanics, Fluids, Heat, Elasticity and Electromagnetic Fields. [Google Scholar]
- Schneider S., Straub J. (1992) Laminar natural convection in a cylindrical enclosure with different end temperatures, Int. J. Heat Mass Trans. 35, 545–557. [CrossRef] [Google Scholar]
- Ma D.J., Henry D., Hadid H. Ben (2005) Three-dimensional numerical study of natural convection in vertical cylinders partially heated from the side, Phys. Fluids 17, 1–12. [Google Scholar]
- De Césaro Oliveski R. (2013) Correlation for the cooling process of vertical storage tanks under natural convection for high Prandtl number, Int. J. Heat Mass Trans. 57, 292–298. [CrossRef] [Google Scholar]
- Rodríguez I., Castro J., Pérez-Segarra C.D., Oliva A. (2009) Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection, Int. J. Therm. Sci. 48, 708–721. [Google Scholar]
- Jourda P., Probert S.D. (1991) Heat-transfer considerations for large liquefied-natural-gas storage tanks, Appl. Energy 38, 263–282. [Google Scholar]
- Khelifi Touhami M.S., Benbrik A., Lemonnier D., Blay D. (2010) Laminar natural convection flow in a cylindrical cavity application to the storage of LNG, J. Pet. Sci. Eng. 71, 126–132. [Google Scholar]
- Roh S., Son G. (2012) Numerical study of natural convection in a liquefied natural gas tank, J. Mech. Sci. Technol. 26, 3133–3140. [CrossRef] [Google Scholar]
- Shin Y., Lee Y.P. (2009) Design of a boil-off natural gas reliquefaction control system for LNG carriers, Appl. Energy 86, 37–44. [Google Scholar]
- Liu S., Li X., Huo Y., Li H. (2015) An analysis of the primary energy consumed by the re-liquefaction of boil-off gas of LNG storage tank, Energy Proc. 75, 3315–3321. [CrossRef] [Google Scholar]
- Guyer E.C., Brownell D.E. (1999) Handbook of applied thermal design, 2nd edn., Taylor & Francis, London. [Google Scholar]
- Ghiaasiaan S.M. (2011) Convective heat and mass transfer, Cambridge University Press, New York. [CrossRef] [Google Scholar]
- Patankar S. (1980) Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences, McGraw Hill, New York. [Google Scholar]
- Douglas J., Gunn J.E. (1964) A general formulation of alternating direction methods, Num. Math. 6, 428. [CrossRef] [MathSciNet] [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
|
|
---|---|---|
Article Number | 21 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.2516/ogst/2018097 | |
Published online | 05 March 2019 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.