Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 74, 2019
Numéro d'article 21
Nombre de pages 13
DOI https://doi.org/10.2516/ogst/2018097
Publié en ligne 5 mars 2019
  • Chen Q.S., Wegrzyn J., Prasad V. (2004) Analysis of temperature and pressure changes in liquefied natural gas (LNG) cryogenic tanks, Cryogenics 44, 701–709. [Google Scholar]
  • Ren J., Zhang H., Bi M., Yu J., Sun S. (2017) Numerical investigation of the coupled heat transfer of liquefied gas storage tanks, Int. J. Hydrogen Energy 42, 24222–24228. [Google Scholar]
  • Zellouf Y., Portannier B. (2011) First step in optimizing LNG storages for offshore terminals, J. Nat. Gas Sci. Eng. 3, 582–590. [Google Scholar]
  • Lemembre A., Petit J.P. (1998) Laminar natural convection in a laterally heated and upper cooled vertical cylindrical enclosure, Int. J. Heat Mass Trans. 41, 2437–2454. [CrossRef] [Google Scholar]
  • Papanicolaou E., Belessiotis V. (2002) Transient natural convection in a cylindrical enclosure at high Rayleigh, Int. J. Heat Mass Trans. 45, 1425–1444. [CrossRef] [Google Scholar]
  • Ginestet S., Le Bot C. (2018) Evaporation flow assessment from petroleum product storage tanks exposed to fire conditions, Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles 73, 27. [CrossRef] [Google Scholar]
  • Daney D.E. (1976) Turbulent natural convection of liquid deuterium, hydrogen and nitrogen within enclosed vessels, Int. J. Heat Mass Trans. 19, 431–441. [CrossRef] [Google Scholar]
  • Evans L.B., Reid R.C. (1968) Transient natural convection in vertical cylinder, AIChE J. 14, 251–259. [Google Scholar]
  • Liang S.F., Vidal A., Acrivos A. (1969) Buoyancy-driven convection in cylindrical geometries, J. Fluid Mech. 36, 239–256. [Google Scholar]
  • Mallinson G.D., Davis G.D.V. (1977) Three-dimensional natural convection in a box: A numerical study, J. Fluid Mech. 83, 11–38. [Google Scholar]
  • Lee H.S., Jung J.H., Yoon H.S. (2013) A numerical study of three dimensional natural convection in a differentially heated cubical enclosure, Proceedings of the 2013 International Conference on Mechanics, Fluids, Heat, Elasticity and Electromagnetic Fields. [Google Scholar]
  • Schneider S., Straub J. (1992) Laminar natural convection in a cylindrical enclosure with different end temperatures, Int. J. Heat Mass Trans. 35, 545–557. [CrossRef] [Google Scholar]
  • Ma D.J., Henry D., Hadid H. Ben (2005) Three-dimensional numerical study of natural convection in vertical cylinders partially heated from the side, Phys. Fluids 17, 1–12. [Google Scholar]
  • De Césaro Oliveski R. (2013) Correlation for the cooling process of vertical storage tanks under natural convection for high Prandtl number, Int. J. Heat Mass Trans. 57, 292–298. [CrossRef] [Google Scholar]
  • Rodríguez I., Castro J., Pérez-Segarra C.D., Oliva A. (2009) Unsteady numerical simulation of the cooling process of vertical storage tanks under laminar natural convection, Int. J. Therm. Sci. 48, 708–721. [Google Scholar]
  • Jourda P., Probert S.D. (1991) Heat-transfer considerations for large liquefied-natural-gas storage tanks, Appl. Energy 38, 263–282. [Google Scholar]
  • Khelifi Touhami M.S., Benbrik A., Lemonnier D., Blay D. (2010) Laminar natural convection flow in a cylindrical cavity application to the storage of LNG, J. Pet. Sci. Eng. 71, 126–132. [Google Scholar]
  • Roh S., Son G. (2012) Numerical study of natural convection in a liquefied natural gas tank, J. Mech. Sci. Technol. 26, 3133–3140. [CrossRef] [Google Scholar]
  • Shin Y., Lee Y.P. (2009) Design of a boil-off natural gas reliquefaction control system for LNG carriers, Appl. Energy 86, 37–44. [Google Scholar]
  • Liu S., Li X., Huo Y., Li H. (2015) An analysis of the primary energy consumed by the re-liquefaction of boil-off gas of LNG storage tank, Energy Proc. 75, 3315–3321. [CrossRef] [Google Scholar]
  • Guyer E.C., Brownell D.E. (1999) Handbook of applied thermal design, 2nd edn., Taylor & Francis, London. [Google Scholar]
  • Ghiaasiaan S.M. (2011) Convective heat and mass transfer, Cambridge University Press, New York. [CrossRef] [Google Scholar]
  • Patankar S. (1980) Numerical heat transfer and fluid flow. Series in computational methods in mechanics and thermal sciences, McGraw Hill, New York. [Google Scholar]
  • Douglas J., Gunn J.E. (1964) A general formulation of alternating direction methods, Num. Math. 6, 428. [CrossRef] [MathSciNet] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.