Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 2, March–April 2017
Dossier: Dynamics of Evolving Fluid Interfaces - DEFI Gathering Physico-Chemical and Flow Properties
Article Number 10
Number of page(s) 7
DOI https://doi.org/10.2516/ogst/2017005
Published online 17 March 2017
  • Vorländer D., Walter R. (1925) The mechanically produced double refraction of amorphous liquids and its connection with molecular form, Z. Phys. Chem. 118, 1–30. [CrossRef] [Google Scholar]
  • Sadron C. (1936) Sur la birefringence dynamique des liquides purs, J. Phys. Radium 7, 263–269. [CrossRef] [EDP Sciences] [Google Scholar]
  • Champion J.V., North P.F. (1968) Variation of flow birefringence with temperature in some liquid n-alkanes, Trans. Faraday Soc. 64, 238–733. [CrossRef] [Google Scholar]
  • Cates M.E., Milner S.T. (1989) Role of shear in the isotropic-to-lamellar transition, Phys. Rev. Lett. 62, 1856–1859. [CrossRef] [PubMed] [Google Scholar]
  • Schmitt V., Lequeux F., Pousse A., Roux D. (1994) Flow behavior and shear induced transition near an isotropic/nematic transition in equilibrium polymers, Langmuir 10, 955–961. [Google Scholar]
  • Berret J.F., Roux D.C., Porte G., Lindner P. (1994) Shear-induced isotropic-to-nematic phase transition in equilibrium polymers, Europhys. Lett. 25, 521–526. [Google Scholar]
  • Decruppe J.P., Cressely R., Makhloufi R., Cappelaere E. (1995) Flow birefringence experiments showing a shear-banding structure in a CTAB solution, Colloid Polym. Sci. 273, 346–351. [Google Scholar]
  • Olmsted P.D., Lu C.-Y.D. (1997) Coexistence and phase separation in sheared complex fluids, Phys. Rev. E 56, 55–4415. [Google Scholar]
  • Cates M.E., Fielding S.M. (2006) Rheology of giant micelles, Adv. Phys. 55, 799–879. [Google Scholar]
  • Hess S. (1976) Flow alignment and flow-induced phase transition in liquid crystals, Z. Naturforsch. A 31, 1507–1513. [Google Scholar]
  • Olmsted P.D., Goldbart P.M. (1990) Theory of the nonequilibrium phase transition for nematic liquid crystals under shear flow, Phys. Rev. A 41, 4578–4581. [CrossRef] [PubMed] [Google Scholar]
  • Pujolle-Robic C., Noirez L. (2001) Observation of shear-induced nematic-isotropic transition in side-chain liquid crystal polymers, Nature 409, 167–171. [CrossRef] [PubMed] [Google Scholar]
  • Reys V., Dormoy Y., Gallani J.L., Martinoty P., Le Barny P., Dubois J.C. (1988) Short-range-order effects in the isotropic phase of a side-chain polymeric liquid crystal, Phys. Rev. Lett. 61, 2340–2343. [PubMed] [Google Scholar]
  • Noirez L., Baroni P., Mendil-Jakani H. (2009) The missing parameter in rheology: hidden solid-like correlations in viscous liquids, polymer melts and glass formers, Polymer International 58, 962–968. [Google Scholar]
  • Noirez L., Baroni P. (2010) Revealing the solid-like nature of glycerol at ambient temperature, J. Mol. Struct. 972, 16–21. [Google Scholar]
  • Noirez L., Mendil-Jakani H., Baroni P. (2011) Identification of finite shear-elasticity in the liquid state of molecular (OTP) and polymeric glass formers (PBuA), Philos. Mag. 91, 1977–1986. [CrossRef] [Google Scholar]
  • Mendil H., Baroni P., Grillot I., Noirez L. (2006) Frozen states in the isotropic phase of liquid-crystal polymers, Phys. Rev. Lett. 96, 077801–3. [PubMed] [Google Scholar]
  • Noirez L., Baroni P. (2012) Identification of a low-frequency elastic behaviour in liquid water, J. Phys.: Condens. Matter 24, 372101–6. [CrossRef] [Google Scholar]
  • Kahl P., Baroni P., Noirez L. (2013) Hidden solidlike properties in the isotropic phase of the 8CB liquid crystal, Phys. Rev. E 88, 50501–5. [Google Scholar]
  • Noirez L. (2005) Origin of shear-induced phase transitions in melts of liquid-crystal polymers, Phys. Rev. E 72, 051701–5. [Google Scholar]
  • Mendil H., Baroni P., Noirez L. (2005) Unexpected giant elasticity in side-chain liquid crystal polymer melts: a new approach for the understanding of shear induced phase transitions, Europhys. Lett. 72, 982–989. [Google Scholar]
  • Hertel G., Hoffmann H. (1988) Lyotropic nematic phases of double chain surfactants, Prog. Colloid. Polym. Sci. 76, 123–131. [Google Scholar]
  • Mendil-Jakani H., Baroni P., Noirez L. (2009) Shear-induced isotropic to nematic transition of liquid-crystal polymers: identification of gap thickness and slipping effects, Langmuir 25, 9, 5248–5252. [PubMed] [Google Scholar]
  • Noirez L., Baroni P., Cao H. (2012) Identification of shear elasticity at low frequency in liquid n-heptadecane, liquid water and RT-ionic liquids [emim][Tf2N], J. Mol. Liq. 176, 71–1986. [Google Scholar]
  • Mendil H., Baroni P., Baroni P. (2006) Solid-like rheological response of non-entangled polymers in the molten state, Eur. Phys. J. E 19, 77–87. [CrossRef] [EDP Sciences] [Google Scholar]
  • Noirez L., Mendil-Jakani H., Baroni P. (2009) New light on old wisdoms on molten polymers: conformation, slippage and shear banding in sheared entangled and unentangled melts, Macromol. Rapid Commun. 30, 1709–1714. [CrossRef] [PubMed] [Google Scholar]
  • Metivier C., Rharbi Y., Magnin A., Bou Abboud A. (2012) Stick-slip control of the Carbopol microgels on polymethyl methacrylate transparent smooth walls, Soft Matt. 8, 7365–7367. [CrossRef] [Google Scholar]
  • Chennevière A., Drockenmuller E., Damiron D., Cousin F., Boué F., Restagno F., Léger L. (2013) Quantitative analysis of interdigitation kinetics between a polymer melt and a polymer brush, Macromol. 46, 6955–6962. [CrossRef] [Google Scholar]
  • Heidenreich S., Ilg P., Hess S. (2007) Boundary conditions for fluids with internal orientational degrees of freedom: apparent velocity slip associated with the molecular alignment, Phys. Rev. E 75, 66302–13. [Google Scholar]
  • Zaccone A., Blundell J.R., Terentjev E. (2011) Network disorder and nonaffine deformations in marginal solids, Phys. Rev. B 84, 174119–174211. [Google Scholar]
  • Smallenburg F., Fillion L., Sciortoni F. (2014) Erasing no-man’s land by thermodynamically stabilizing the liquid-liquid transition in tetrahedral particles, Nat. Phys. 10, 653–657. [CrossRef] [PubMed] [Google Scholar]
  • Schoen M., Hess S., Diestler D.J. (1995) Rheological properties of confined thin films, Phys. Rev. E 52, 2587–2602. [Google Scholar]
  • Volino F. (1997) Théorie visco-élastique non-extensive, Ann. Phys. Fr. 22, 181–231. [CrossRef] [EDP Sciences] [Google Scholar]
  • Manning M.L., Foty R.A., Steinberg M.S., Schoetz E.-M. (2010) Coaction of intercellular adhesion and cortical tension specifies tissue surface tension, PNAS 107, 12517–12522. [CrossRef] [Google Scholar]
  • Kahl P., Baroni P., Noirez L. (2016) Bringing to light hidden elasticity in the liquid state using in-situ pretransitional liquid crystal swarms, PLoS One 11, 2, e0147914. [PubMed] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.