Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 2, March–April 2017
Dossier: SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows
Article Number 12
Number of page(s) 11
Published online 05 April 2017
  • Grospellier G., Lelandais B. (2009) The arcane development framework, Proc. of the 8th workshop on Parallel/High-Performance Object-Oriented Scientific Computing, POOSC ‘09, ACM, New York, NY, USA, pp. 4:1–4:11, ISBN: 978-1-60558-547-5.
  • Niebler E. (2011) Boost::proto documentation. Available at
  • Di Pietro D.A., Gratien J.-M., Prud’homme C. (2013) A domain specific embedded language in C++ for lowest-order methods for diffusive problem on general meshes, BIT Numer. Math. 53, 111–152. [CrossRef] [MathSciNet]
  • Gratien J.-M. (2012) Implementing a domain specific embedded language for lowest-order variational methods with Boost Proto, Available at
  • Gratien J.-M. (2013) An abstract object oriented runtime system for heterogeneous parallel architecture, Available at Working paper or preprint.
  • Di Pietro D.A., Gratien J.-M. (2011) Lowest order methods for diffusive problems on general meshes: a unified approach to definition and implementation, FVCA6 Proc., Available at
  • Brezzi F., Lipnikov K., Shashkov M. (2005) Convergence of mimetic finite difference methods for diffusion problems on polyhedral meshes, SIAM J. Numer. Anal. 43, 1872–1896. [CrossRef] [MathSciNet]
  • Brezzi F., Lipnikov K., Simoncini V. (2005) A family of mimetic finite difference methods on polygonal and polyhedral meshes, Math. Models Methods Appl. Sci. 15, 1533–1553.
  • Droniou J., Eymard R., Gallouet T., Herbin R. (2010) A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods, Math. Models Methods Appl. Sci. 20, 2, 265–295. [CrossRef] [MathSciNet]
  • Eymard R., Gallouet Th., Herbin R. (2010) Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces, IMA J. Numer. Anal. 30, 1009–1043. [CrossRef] [MathSciNet]
  • Agélas L., Di Pietro D.A., Droniou J. (2010) The G method for heterogeneous anisotropic diffusion on general meshes, M2AN Math. Model. Numer. Anal. 44, 4, 597–625. [CrossRef] [EDP Sciences] [MathSciNet]
  • Di Pietro D.A. (2010) Cell-centered Galerkin methods, C. R. Math. Acad. Sci. Paris 348, 31–34. [CrossRef] [MathSciNet]
  • Di Pietro D.A. (2011) A compact cell-centered Galerkin method with subgrid stabilization, C. R. Acad. Sci. Paris, Ser. I. 348, 1-2, 93–98. [CrossRef]
  • Lemaire S. (2013) Nonconforming discretizations of a poromechanical model on general meshes. PhD Report, Available at
  • Di Pietro D.A. (2012) Cell centered Galerkin methods for diffusive problems, M2AN Math. Model. Numer. Anal. 46, 6, 111–144. [CrossRef] [EDP Sciences]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.