IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 1, January–February 2016
IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Numéro d'article 1
Nombre de pages 16
DOI https://doi.org/10.2516/ogst/2015021
Publié en ligne 15 janvier 2016
  • Heywood J.B. (1988) Internal Combustion Engines Fundamentals, McGraw-Hill. [Google Scholar]
  • Lumley J.L. (1999) Engines. An Introduction, Cambridge University Press. [CrossRef] [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2013) Evaluating large-eddy simulation (LES) and high-speed particle image velocimetry (PIV) with phase-invariant proper orthogonal decomposition (POD), Oil & Gas Science and Technology. [Google Scholar]
  • Arányi P., Janiga G., Zähringer K., Thévenin D. (2013) Analysis of different pod methods for piv-measurements in complex unsteady flows, International Journal of Heat and Fluid Flow 204–211. [CrossRef] [Google Scholar]
  • Borée J., Maurel S., Bazile R. (2002) Disruption of a compressed vortex. Physics of Fluids (1994-present) 14, 2543–2556. [CrossRef] [Google Scholar]
  • Chen H., Reuss D., Hung D., Sick V. (2013) A practical guide for using proper orthogonal decomposition in engine research, International Journal of Engine Research 14, 4, 307–319. [CrossRef] [Google Scholar]
  • Chen H., Reuss D., Sick V. (2012) On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows, Measurement Science and Technology 23, 085302. [CrossRef] [Google Scholar]
  • di Mare F., Knappstein R., (2014) Statistical analysis of the flow characteristics and cyclic variability using proper orthogonal decomposition of highly resolved les in internal combustion engines, Computers & Fluids 105, 101–112. [CrossRef] [Google Scholar]
  • Juergens W., Kaltenbach H. (2003) Eigenmode decomposition of turbulent velocity fields behind a swept, backward-facing step, Journal of Turbulence 4, 18. [Google Scholar]
  • Block D., Teliban I., Greiner F., Piel A. (2006) Prospects and limitations of conditional averaging, Physica Scripta 2006, 25. [CrossRef] [Google Scholar]
  • Morse A., Whitelaw J., Yianneskis M. (1979) Turbulent flow measurements by laser-doppler anemometry in motored piston-cylinder assemblies, J. Fluids Eng. 101, 2, 208–216. [CrossRef] [Google Scholar]
  • Sick V., Reuss D., Rutland C., Howarth D., Oefelein J., Janicka J., Kuo T.-W., Yang X., Freitag M. (2010) A common engine platform for engine les development and validation, International Conference on Large-Eddy Simulation for Internal Combustion Engine Flows (LES4ICE), Rueil-Maimaison, France, 18-19 Nov. [Google Scholar]
  • Baby X., Dupont A., Ahmed A., Deslandes G., Charnay W., Michard M. (2002) A new methodology to analyze cycle-to-cycle aerodynamic variations. Technical report, SAE Technical Paper 2002-01-2837. [Google Scholar]
  • Böhm B., di Mare F., Dreizler A. (2010) Characterisation of cyclic variability in an optically accessible IC engine by means of phase-independent POD, les Rencontres Scientifiques de l’IFP, LES for Internal Combustion Engine Flows (LES4ICE), 18-19 Nov. [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2009) Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup, International Journal of Heat and Fluid Flow 30, 1, 32–43. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Computers and Fluids 39, 1, 25–48. [CrossRef] [Google Scholar]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Experiments in Fluids 50, 1393–1407. [CrossRef] [Google Scholar]
  • Haworth D. (1999) Large-eddy simulation of in-cylinder flows, Oil & Gas Science and Technology 54, 2, 175–185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines - a review, International Journal of Engine Research 12, 5, 421–451. [CrossRef] [EDP Sciences] [Google Scholar]
  • Cao Y., Kaiser E., Borée J., Noack B.R., Thomas L., Guilain S. (2014) Cluster-based analysis of cycle-to-cycle variations: application to internal combustion engines, Experiments in Fluids 55, 11. [CrossRef] [PubMed] [Google Scholar]
  • Lumley J. (1967) The structure of inhomogeneous turbulent flows, Atmospheric Turbulence and Radio Wave Propagation, Yaglom A.M., Tatarski V.I., (eds.), pp. 166–178. [Google Scholar]
  • Mureithi N., Huynh K., Rodriguez M., Pham A. (2010) A simple low order model of the forced karman wake, International Journal of Mechanical Sciences 52, 11, 1522–1534. [CrossRef] [Google Scholar]
  • Orellano A., Wengle H. (2001) POD analysis of coherent structures in forced turbulent flow over a fence, Journal of Turbulence 2, 8. [CrossRef] [Google Scholar]
  • Chatterjee A. (2000) An introduction to the proper orthogonal decomposition, Current Science 78, 7, 808–817. [Google Scholar]
  • Holmes P., Lumley J., Berkooz G., Rowley C. (2012) Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press. [CrossRef] [Google Scholar]
  • Liu K., Haworth D.C., Yang X., Gopalakrishnan V. (2013) Largeeddy simulation of motored flow in a two-valve piston engine: Pod analysis and cycle-to-cycle variations, Flow, Turbulence and Combustion 91, 373–403. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Wetzel M., Durst B. (2009) Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder, Flow, Turbulence and Combustion 83, 1, 1–20. [CrossRef] [Google Scholar]
  • Menter F.R., Egorov Y. (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1: Theory and model description, Flow, Turbulence and Combustion 85, 113–138. [CrossRef] [Google Scholar]
  • Rotta J. (2010) Turbulente Strömungen, Göttinger Klassiker der Stroemungsmechanik, Universitaetsverlag Goettingen. [Google Scholar]
  • Menter F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32, 8, 1598–1605. [NASA ADS] [CrossRef] [Google Scholar]
  • Egorov Y., Menter F., Lechner R., Cokljat D. (2010) The scaleadaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows, Flow, Turbulence and Combustion 85, 139–165. [CrossRef] [Google Scholar]
  • Lucius A., Brenner G. (2010) Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation, International Journal of Heat and Fluid Flow 31, 6, 1113–1118. [CrossRef] [Google Scholar]
  • Haworth D., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Computers & Fluids 29, 493–524. [CrossRef] [Google Scholar]
  • Schmitt M., Frouzakis C.E., Tomboulides A.G., Wright Y.M.Boulouchos K. (2014) Direct numerical simulation of multiple cycles in a valve/piston assembly, Physics of Fluids (1994-present) 26, 035105. [CrossRef] [Google Scholar]
  • Schmitt M., Frouzakis C.E., Tomboulides H.A.G., Wright A., Boulouchos K. (2014) Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions, Proceedings of the Combustion Institute 35, 3069–3077. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.