IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 1, January–February 2016
IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Numéro d'article 2
Nombre de pages 15
DOI https://doi.org/10.2516/ogst/2015022
Publié en ligne 22 janvier 2016
  • Bicen A.F., Vafidis C., Whitelaw J.H. (1985) Steady and unsteady airflow through the intake valve of reciprocating engine, Journal of Fluids Engineering, Transactions of the ASME 107, 3, 413–420. [Google Scholar]
  • Heywood J.B. (1988) Internal combustion engine fundamentals, Mcgraw-Hill, New York. [Google Scholar]
  • Imberdis O., Hartmann M., Bensler H., Kapitza L., Thevenin D. (2007) A numerical and experimental investigation of a DISI-engine intake port generated turbulent flow, SAE Technical Paper 2007-01-4047. [Google Scholar]
  • Stansfield P., Wigley G., Justham T., Catto J., Pitcher G. (2007) PIV analysis of in-cylinder flow structures over a range of realistic engine speeds, Experiments in Fluids 43, 1, 135–146. [CrossRef] [Google Scholar]
  • Namazian M., Hansen S., Lyford-Pike E., Sanchez-Barsse J., Heywood J., Rife J. (1980) Schlieren visualization of the flow and density fields in the cylinder of a spark-ignition engine, SAE Technical Paper 800044. [Google Scholar]
  • Weclas M., Melling A., Durst F. (1995) Unsteady intake valve gap flows, SAE Technical Paper 952477. [Google Scholar]
  • Weclas M., Melling A., Durst F. (1998) Flow separation in the inlet valve gap of piston engines, Progress in Energy and Combustion Science 24, 3, 165–195. [CrossRef] [Google Scholar]
  • Valentino G., Kaufman D., Farrell P. (1993) Intake valve flow measurements using PIV, SAE Technical Paper 932700. [Google Scholar]
  • Bücker I., Karhoff D.C., Klaas M., Schröder W. (2012) Stereoscopic multi-planar PIV measurements of in-cylinder tumbling flow, Experiments in Fluids 53, 6, 1993–2009. [CrossRef] [Google Scholar]
  • Baum E., Peterson B., Surmann C., Michaelis D., Böhm B., Dreizler A. (2013) Investigation of the 3D flow field in an IC engine using tomographic PIV, Proceedings of the Combustion Institute 34, 2, 2903–2910. [Google Scholar]
  • Freudenhammer D., Baum E., Peterson B., Böhm B., Jung B., Grundmann S. (2014) Volumetric intake flow measurements of an IC engine using magnetic resonance velocimetry, Experiments in Fluids 55, 5. [CrossRef] [Google Scholar]
  • McLandress A., Emerson R., McDowell P., Rutland C. (1996) Intake and in-cylinder flow modeling characterization of mixing and comparison with flow bench results, SAE Technical Paper 960635. [Google Scholar]
  • Inagaki M., Nagaoka M., Horinouchi N., Suga K. (2010) Large eddy simulation analysis of engine steady intake flows using a mixed-time-scale subgrid-scale model, International Journal of Engine Research 11, 3, 229–241. [CrossRef] [Google Scholar]
  • Kaiser S.A., Schild M., Schulz C. (2013) Thermal stratification in an internal combustion engine due to wall heat transfer measured by laser-induced fluorescence, Proceedings of the Combustion Institute 34, 2, 2911–2919. [CrossRef] [Google Scholar]
  • Gessenhardt C. (2013) Endoskopische Bestimmung des Temperaturfeldes im Brennraum von Ottomotoren mittels laserinduzierter Fluoreszenz, PhD Thesis, Universität Duisburg-Essen. [Google Scholar]
  • Melling A. (1997) Tracer particles and seeding for particle image velocimetry, Measurement Science and Technology 8, 12, 1406–416. [CrossRef] [Google Scholar]
  • LaVision (2013) Product-Manual Flow Master for DaVis 8.1. [Google Scholar]
  • Wieneke B., Pfeiffer K. (2010) Adaptive PIV with variable interrogation window size and shape, 15th International Symposium on Applications of Laser Techniques to Fluid Mechanics. [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2009) Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup, International Journal of Heat and Fluid Flow 30, 1, 32–43. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Wetzel M., Durst B. (2009) Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder, Flow, Turbulence and Combustion 83, 1, 1–20. [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Computers and Fluids 39, 1, 25–48. [Google Scholar]
  • Sohm V. (2007) Hybrid turbulence simulation to predict cyclic variations in internal combustion engines, PhD Thesis, RWTH Aachen. [Google Scholar]
  • Travin A., Shur M., Strelets M., Spalart P.R. (2004) Physical and numerical upgrades in the detached-eddy simulation of complex turbulent flows, Fluid Mechanics and its Applications 65, 239–254. [Google Scholar]
  • Menter F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA journal 32, 8, 1598–1605. [Google Scholar]
  • Menter F.R., Kuntz M. (2003) Development and application of a zonal DES turbulence model for CFX-5, ANYSYS CFX validation report, Technical report, ANSYS. [Google Scholar]
  • Pope S.B. (2000) Turbulent Flows, Cornell University, 1st edition. [CrossRef] [Google Scholar]
  • Celik I., Klein M., Janicka J. (2009) Assessment measures for engineering LES applications, Journal of Fluids Engineering 131, 3, 031102. [CrossRef] [Google Scholar]
  • Kempf A., Geurts B., Ma T., Pettit M., Stein O. (2011) Quality issues in combustion LES, Journal of Scientific Computing 49, 1, 51–64. [CrossRef] [Google Scholar]
  • Tennekes H., Lumley J.L. (1972) A first course in turbulence, MIT press. [Google Scholar]
  • Liu K., Haworth D. (2011) Development and assessment of POD for analysis of turbulent flow in piston engines.SAE Technical Paper 2011-01-0830. [Google Scholar]
  • Schlichting H., Gersten K., Gersten K. (2000) Boundary-layer theory, Springer Science & Business Media. [Google Scholar]
  • Jainski C., Lu L., Dreizler A., Sick V. (2013) High-speed micro particle image velocimetry studies of boundary-layer flows in a direct-injection engine, International Journal of Engine Research 14, 3, 247–259. [Google Scholar]
  • Roshko Anatol (1961) Experiments on the flow past a circular cylinder at very high reynolds number, Journal of Fluid Mechanics 10, 03, 345–356. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.