IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
IFP Energies nouvelles International Conference: LES4ICE 2014 – Large-Eddy Simulation for Internal Combustion Engine Flows
Article Number 1
Number of page(s) 16
DOI https://doi.org/10.2516/ogst/2015021
Published online 15 January 2016
  • Heywood J.B. (1988) Internal Combustion Engines Fundamentals, McGraw-Hill. [Google Scholar]
  • Lumley J.L. (1999) Engines. An Introduction, Cambridge University Press. [CrossRef] [Google Scholar]
  • Abraham P., Liu K., Haworth D., Reuss D., Sick V. (2013) Evaluating large-eddy simulation (LES) and high-speed particle image velocimetry (PIV) with phase-invariant proper orthogonal decomposition (POD), Oil & Gas Science and Technology. [Google Scholar]
  • Arányi P., Janiga G., Zähringer K., Thévenin D. (2013) Analysis of different pod methods for piv-measurements in complex unsteady flows, International Journal of Heat and Fluid Flow 204–211. [CrossRef] [Google Scholar]
  • Borée J., Maurel S., Bazile R. (2002) Disruption of a compressed vortex. Physics of Fluids (1994-present) 14, 2543–2556. [Google Scholar]
  • Chen H., Reuss D., Hung D., Sick V. (2013) A practical guide for using proper orthogonal decomposition in engine research, International Journal of Engine Research 14, 4, 307–319. [CrossRef] [Google Scholar]
  • Chen H., Reuss D., Sick V. (2012) On the use and interpretation of proper orthogonal decomposition of in-cylinder engine flows, Measurement Science and Technology 23, 085302. [CrossRef] [Google Scholar]
  • di Mare F., Knappstein R., (2014) Statistical analysis of the flow characteristics and cyclic variability using proper orthogonal decomposition of highly resolved les in internal combustion engines, Computers & Fluids 105, 101–112. [CrossRef] [Google Scholar]
  • Juergens W., Kaltenbach H. (2003) Eigenmode decomposition of turbulent velocity fields behind a swept, backward-facing step, Journal of Turbulence 4, 18. [Google Scholar]
  • Block D., Teliban I., Greiner F., Piel A. (2006) Prospects and limitations of conditional averaging, Physica Scripta 2006, 25. [CrossRef] [Google Scholar]
  • Morse A., Whitelaw J., Yianneskis M. (1979) Turbulent flow measurements by laser-doppler anemometry in motored piston-cylinder assemblies, J. Fluids Eng. 101, 2, 208–216. [Google Scholar]
  • Sick V., Reuss D., Rutland C., Howarth D., Oefelein J., Janicka J., Kuo T.-W., Yang X., Freitag M. (2010) A common engine platform for engine les development and validation, International Conference on Large-Eddy Simulation for Internal Combustion Engine Flows (LES4ICE), Rueil-Maimaison, France, 18-19 Nov. [Google Scholar]
  • Baby X., Dupont A., Ahmed A., Deslandes G., Charnay W., Michard M. (2002) A new methodology to analyze cycle-to-cycle aerodynamic variations. Technical report, SAE Technical Paper 2002-01-2837. [Google Scholar]
  • Böhm B., di Mare F., Dreizler A. (2010) Characterisation of cyclic variability in an optically accessible IC engine by means of phase-independent POD, les Rencontres Scientifiques de l’IFP, LES for Internal Combustion Engine Flows (LES4ICE), 18-19 Nov. [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2009) Detached eddy simulation of cyclic large scale fluctuations in a simplified engine setup, International Journal of Heat and Fluid Flow 30, 1, 32–43. [CrossRef] [Google Scholar]
  • Hasse C., Sohm V., Durst B. (2010) Numerical investigation of cyclic variations in gasoline engines using a hybrid URANS/LES modeling approach, Computers and Fluids 39, 1, 25–48. [Google Scholar]
  • Voisine M., Thomas L., Borée J., Rey P. (2011) Spatio-temporal structure and cycle to cycle variations of an in-cylinder tumbling flow, Experiments in Fluids 50, 1393–1407. [Google Scholar]
  • Haworth D. (1999) Large-eddy simulation of in-cylinder flows, Oil & Gas Science and Technology 54, 2, 175–185. [CrossRef] [EDP Sciences] [Google Scholar]
  • Rutland C.J. (2011) Large-eddy simulations for internal combustion engines - a review, International Journal of Engine Research 12, 5, 421–451. [Google Scholar]
  • Cao Y., Kaiser E., Borée J., Noack B.R., Thomas L., Guilain S. (2014) Cluster-based analysis of cycle-to-cycle variations: application to internal combustion engines, Experiments in Fluids 55, 11. [CrossRef] [PubMed] [Google Scholar]
  • Lumley J. (1967) The structure of inhomogeneous turbulent flows, Atmospheric Turbulence and Radio Wave Propagation, Yaglom A.M., Tatarski V.I., (eds.), pp. 166–178. [Google Scholar]
  • Mureithi N., Huynh K., Rodriguez M., Pham A. (2010) A simple low order model of the forced karman wake, International Journal of Mechanical Sciences 52, 11, 1522–1534. [CrossRef] [Google Scholar]
  • Orellano A., Wengle H. (2001) POD analysis of coherent structures in forced turbulent flow over a fence, Journal of Turbulence 2, 8. [CrossRef] [Google Scholar]
  • Chatterjee A. (2000) An introduction to the proper orthogonal decomposition, Current Science 78, 7, 808–817. [Google Scholar]
  • Holmes P., Lumley J., Berkooz G., Rowley C. (2012) Turbulence, Coherent Structures, Dynamical Systems and Symmetry, Cambridge University Press. [CrossRef] [Google Scholar]
  • Liu K., Haworth D.C., Yang X., Gopalakrishnan V. (2013) Largeeddy simulation of motored flow in a two-valve piston engine: Pod analysis and cycle-to-cycle variations, Flow, Turbulence and Combustion 91, 373–403. [Google Scholar]
  • Hasse C., Sohm V., Wetzel M., Durst B. (2009) Hybrid URANS/LES turbulence simulation of vortex shedding behind a triangular flameholder, Flow, Turbulence and Combustion 83, 1, 1–20. [Google Scholar]
  • Menter F.R., Egorov Y. (2010) The scale-adaptive simulation method for unsteady turbulent flow predictions. part 1: Theory and model description, Flow, Turbulence and Combustion 85, 113–138. [Google Scholar]
  • Rotta J. (2010) Turbulente Strömungen, Göttinger Klassiker der Stroemungsmechanik, Universitaetsverlag Goettingen. [Google Scholar]
  • Menter F.R. (1994) Two-equation eddy-viscosity turbulence models for engineering applications, AIAA Journal 32, 8, 1598–1605. [NASA ADS] [CrossRef] [Google Scholar]
  • Egorov Y., Menter F., Lechner R., Cokljat D. (2010) The scaleadaptive simulation method for unsteady turbulent flow predictions. part 2: Application to complex flows, Flow, Turbulence and Combustion 85, 139–165. [Google Scholar]
  • Lucius A., Brenner G. (2010) Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation, International Journal of Heat and Fluid Flow 31, 6, 1113–1118. [CrossRef] [Google Scholar]
  • Haworth D., Jansen K. (2000) Large-eddy simulation on unstructured deforming meshes: towards reciprocating IC engines, Computers & Fluids 29, 493–524. [CrossRef] [Google Scholar]
  • Schmitt M., Frouzakis C.E., Tomboulides A.G., Wright Y.M.Boulouchos K. (2014) Direct numerical simulation of multiple cycles in a valve/piston assembly, Physics of Fluids (1994-present) 26, 035105. [CrossRef] [Google Scholar]
  • Schmitt M., Frouzakis C.E., Tomboulides H.A.G., Wright A., Boulouchos K. (2014) Direct numerical simulation of the effect of compression on the flow, temperature and composition under engine-like conditions, Proceedings of the Combustion Institute 35, 3069–3077. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.