Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 5, September-October 2011
Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Page(s) 823 - 843
DOI https://doi.org/10.2516/ogst/2011138
Publié en ligne 11 novembre 2011
  • Akihama K., Takatori Y., Inagaki K., Sasaki S., Dean A.M. (2001) Mechanism of the smokeless Rich Diesel Combustion by reducing temperature, SAE Technical paper 2001-01-0655. [Google Scholar]
  • Siebers D.L., Pickett L.M. (2004) Non-Sooting, Low Flame Temperature Mixing controlled DI Diesel Combustion, SAE Technical paper 2004-01-1299. [Google Scholar]
  • Kimura S., Osamu A., Kitahara Y., Aiyoshizawa E. (2001) Ultra-clean Combustion Technology Combining a Low Temperature and Premixed Combustion Concept for Meeting Future Emission Standards, SAE Technical paper 2001-01-0200. [Google Scholar]
  • Lejeune M., Lortet D., Benajes J., Riesco J.M. (2004) Potential of Premixed Combustion with Flash Late Injection on a Heavy- Duty Diesel Engine, SAE Technical paper 2004-01-1906. [Google Scholar]
  • Dronniou N., Lejeune M., Balloul I., Higelin P. (2005) Combination of High EGR rates and multiple injection Strategies to reduce Pollutant Emissions, SAE Technical paper 2005-01-3726. [Google Scholar]
  • Barba C., Burjhardt C., Boulouchos K., Bargende M. (2000) A phenomenological combustion model for heat release rate prediction in high-speed DI diesel engines with common rail injection, SAE Technical paper 2000-01-2933. [Google Scholar]
  • Chmela F., Engelmayer M., Pirker G., Wimmer A. (2004) Prediction of turbulence controlled combustion in diesel engines, in THIESEL 2004 Conference on Thermo- and Fluid dynamic Processes in Diesel Engines. Valencia, Spain, 7-10 September 2004. [Google Scholar]
  • Chmela F., Orthabe G. (2004) Rate of heat release prediction for direct injection diesel engines based on purely mixing controlled combustion, Oil Gas Sci. Technol. Rev. IFP 59, 6, 148-155. [Google Scholar]
  • Albrecht A., Chauvin J., Lafossas F.-A., Potteau S., Corde G. (2006) Development of Highly Premixed Combustion Diesel Engine Model: From Simulation to Control Design, SAE Technical paper 2006-01-1072. [Google Scholar]
  • Siewert M.R. (2007) A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical paper 2007-01-0673. [Google Scholar]
  • Tauzia X., Maiboom A., Chesse P., Thouvenel N. (2006) A new Phenomenological heat release model for thermodynamical simulation of modern turbocharged heavy duty Diesel engines, Appl. Therm. Eng. 26, 1851-1857. [CrossRef] [Google Scholar]
  • Kusleshov A.S. (2005) Model for predicting air-fuel mixing, combustion and emissions in DI diesel engines over whole operating range, SAE Technical paper 2005-01-2119. [Google Scholar]
  • Inagaki K., Ueda M., Mizuta J., Nakakita K., Nakayama S. (2008) Universal Diesel Engine Simulator (UniDES) 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion, SAE Technical paper 2008-01-0843. [Google Scholar]
  • Yuner M., Pasternak M., Mauss F., Bensler H. (2008) A PDFBased Model for Full Cycle Simulation of Direct Injected Engines, SAE Technical Paper 2008-01-1606. [Google Scholar]
  • Pasternak M., Mauss F., Bensler H. (2009) Diesel Engine Cycle Simulation with a Reduced Set of Modeling Parameters Based on Detailed Kinetics, SAE Technical paper 2009-01-0676. [Google Scholar]
  • Dec J.E. (1997) A conceptual model of DI Diesel combustion based on laser-sheet imaging, SAE Technical paper 970873. [Google Scholar]
  • Nishida K., Zhang W., Manabe T. (2007) Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray, JSAE 20077100, SAE Technical paper 2007- 01-1890. [Google Scholar]
  • Mauviot G., Albrecht A., Poinsot T. (2006) A new 0D approach for Diesel combustion modeling coupling probability density function with complex chemistry, SAE Technical paper 2006- 01-3332. [Google Scholar]
  • Higgins B., Siebers D., Aradi A. (2000) Diesel-Spray Ignition and Premixed-Burn Behavior, SAE Technical paper 2000-01- 0940. [Google Scholar]
  • Dec J.E., Espey C. (1998) Chemiluminescence Imaging of Autoignition in a DI Diesel Engine, SAE Technical paper 982685. [Google Scholar]
  • Hergart C., Barths H., Peters N. (1999) Modeling the Combustion in a Small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets, SAE Technical paper 1999-01-3550 [Google Scholar]
  • Han Z., Uludogan A., Hampson G.J., Reitz R.D. (1996) Mechanism of Soot and NOx Emission Reduction Using Multiple-injection in a Diesel Engine, SAE Technical paper 960633. [Google Scholar]
  • Bordet N., Caillol C., Higelin P., Talon V. (2010) A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines, SAE Technical paper 2010-01-1493. [Google Scholar]
  • Woschni G. (1967) Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Technical paper 670931. [Google Scholar]
  • Huber K., Woschni G., Zeilinger K. (1990) Investigations on heat transfer in internal combustion engines under low load and motoring conditions, SAE Technical paper 905018. [Google Scholar]
  • Dulbecco A., Lafossas F.A., Mauviot G., Poinsot T.J (2009) A New 0D Diesel HCCI Combustion Model Derived from a 3D CFD Approach with Detailed Tabulated Chemistry, Oil Gas Sci.Technol., 3, 259-284. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dulbecco A., Lafossas F.A., Poinsot T.J. (2009) A 0D Phenomenological Approach to model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry, SAE Technical paper 2009-01-0678. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE Technical paper 960034. [Google Scholar]
  • Siebers D. (1999) Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization, SAE Technical paper 1999-01-0528. [Google Scholar]
  • Jaine T. (2004) Simulation zerodimensionnelle de la combustion dans un moteur Diesel a Injection Directe, PhD Thesis Universite d’Orleans. [Google Scholar]
  • Dronniou N. (2008) Etude theorique et experimentale des strategies de combustion homogene. Application aux moteurs Diesel pour vehicules industriels, PhD Thesis, Universite d’Orleans. [Google Scholar]
  • Bozza F., Gimelli A. (2007) Steady-state and Transient Operation Simulation of a Downsized Turbocharged SI Engine, SAE Technical paper 2007-01-0381. [Google Scholar]
  • Bozza F. (2007) 3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine, SAE Technical paper 2007-24-0029. [Google Scholar]
  • Flynn P.F., Durett R.P., Hunter G.L., Loye A., Akinyemi O.C., Dec J.E., Westbrook C.K. (1999) Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation, SAE Technical paper 1999- 01-0509. [Google Scholar]
  • Colin O., Benkenida A. (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. 59, 6, 593-609. [Google Scholar]
  • Nishida K., Zhang W., Manabe T. (2007) Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray, SAE Technical paper 2007-01-1890. [Google Scholar]
  • Mauviot G. (2007) Developpement d’une modelisation phenomenologique de chambres de combustion de moteurs a piston par reduction de modele physique 3-D dans la perspective d’une integration dans un outil de simulation systeme, PhD Thesis, UPMC, French. [Google Scholar]
  • Pires Da Cruz A. (2004) Three-dimensional modeling of selfignition in HCCI and conventional Diesel engines, Combust. Sci. Technol. 176, 867-887. [Google Scholar]
  • Colin O., Pires Da Cruz A., Jay S. (2005) Detailed chemistry based auto-ignition model including low temperature phenomena applied to 3D engine calculations, Proc. Combust. Inst. 30, 2, 2649-2656. [CrossRef] [Google Scholar]
  • Subramanian G., Pires Da Cruz A., Colin O., Vervisch L. (2007) Modeling Engine Turbulent Auto-Ignition Using Tabulated Detailed Chemistry, SAE Technical paper 2007-01-0150. [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A. (1989) Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Report No. SAND89- 8009.UC401, Sandia National Laboratories. [Google Scholar]
  • Lutz A., Kee R.J., Miller J.A. (1987) Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248.UC-4, Sandia National Laboratories. [Google Scholar]
  • Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. (1998) Combust. Flame 114, 1/2, 149-177. [CrossRef] [Google Scholar]
  • Dulbecco A. (2009) Modeling of Diesel HCCI Combustion and Its Impact on pollutant Emissions, PhD Thesis, MEGeP, English. [Google Scholar]
  • Weisser G., Boulouchos K. (1995) NOEMI – A Tool for the Precalculation of Nitric Oxide Emissions of DI Diesel Engines, The Working Process of the Internal Combustion Engine, Technical University Graz. [Google Scholar]
  • Jaine T., Higelin P. (2004) Moteur a allumage par compression, Techniques de l’ingenieur: Modelisation du cycle moteur BM 2 516 (French). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.