Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 5, September-October 2011
Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Page(s) 823 - 843
Published online 11 November 2011
  • Akihama K., Takatori Y., Inagaki K., Sasaki S., Dean A.M. (2001) Mechanism of the smokeless Rich Diesel Combustion by reducing temperature, SAE Technical paper 2001-01-0655. [Google Scholar]
  • Siebers D.L., Pickett L.M. (2004) Non-Sooting, Low Flame Temperature Mixing controlled DI Diesel Combustion, SAE Technical paper 2004-01-1299. [Google Scholar]
  • Kimura S., Osamu A., Kitahara Y., Aiyoshizawa E. (2001) Ultra-clean Combustion Technology Combining a Low Temperature and Premixed Combustion Concept for Meeting Future Emission Standards, SAE Technical paper 2001-01-0200. [Google Scholar]
  • Lejeune M., Lortet D., Benajes J., Riesco J.M. (2004) Potential of Premixed Combustion with Flash Late Injection on a Heavy- Duty Diesel Engine, SAE Technical paper 2004-01-1906. [Google Scholar]
  • Dronniou N., Lejeune M., Balloul I., Higelin P. (2005) Combination of High EGR rates and multiple injection Strategies to reduce Pollutant Emissions, SAE Technical paper 2005-01-3726. [Google Scholar]
  • Barba C., Burjhardt C., Boulouchos K., Bargende M. (2000) A phenomenological combustion model for heat release rate prediction in high-speed DI diesel engines with common rail injection, SAE Technical paper 2000-01-2933. [Google Scholar]
  • Chmela F., Engelmayer M., Pirker G., Wimmer A. (2004) Prediction of turbulence controlled combustion in diesel engines, in THIESEL 2004 Conference on Thermo- and Fluid dynamic Processes in Diesel Engines. Valencia, Spain, 7-10 September 2004. [Google Scholar]
  • Chmela F., Orthabe G. (2004) Rate of heat release prediction for direct injection diesel engines based on purely mixing controlled combustion, Oil Gas Sci. Technol. Rev. IFP 59, 6, 148-155. [Google Scholar]
  • Albrecht A., Chauvin J., Lafossas F.-A., Potteau S., Corde G. (2006) Development of Highly Premixed Combustion Diesel Engine Model: From Simulation to Control Design, SAE Technical paper 2006-01-1072. [Google Scholar]
  • Siewert M.R. (2007) A Phenomenological Engine Model for Direct Injection of Liquid Fuels, Spray Penetration, Vaporization, Ignition Delay, and Combustion, SAE Technical paper 2007-01-0673. [Google Scholar]
  • Tauzia X., Maiboom A., Chesse P., Thouvenel N. (2006) A new Phenomenological heat release model for thermodynamical simulation of modern turbocharged heavy duty Diesel engines, Appl. Therm. Eng. 26, 1851-1857. [CrossRef] [Google Scholar]
  • Kusleshov A.S. (2005) Model for predicting air-fuel mixing, combustion and emissions in DI diesel engines over whole operating range, SAE Technical paper 2005-01-2119. [Google Scholar]
  • Inagaki K., Ueda M., Mizuta J., Nakakita K., Nakayama S. (2008) Universal Diesel Engine Simulator (UniDES) 1st Report: Phenomenological Multi-Zone PDF Model for Predicting the Transient Behavior of Diesel Engine Combustion, SAE Technical paper 2008-01-0843. [Google Scholar]
  • Yuner M., Pasternak M., Mauss F., Bensler H. (2008) A PDFBased Model for Full Cycle Simulation of Direct Injected Engines, SAE Technical Paper 2008-01-1606. [Google Scholar]
  • Pasternak M., Mauss F., Bensler H. (2009) Diesel Engine Cycle Simulation with a Reduced Set of Modeling Parameters Based on Detailed Kinetics, SAE Technical paper 2009-01-0676. [Google Scholar]
  • Dec J.E. (1997) A conceptual model of DI Diesel combustion based on laser-sheet imaging, SAE Technical paper 970873. [Google Scholar]
  • Nishida K., Zhang W., Manabe T. (2007) Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray, JSAE 20077100, SAE Technical paper 2007- 01-1890. [Google Scholar]
  • Mauviot G., Albrecht A., Poinsot T. (2006) A new 0D approach for Diesel combustion modeling coupling probability density function with complex chemistry, SAE Technical paper 2006- 01-3332. [Google Scholar]
  • Higgins B., Siebers D., Aradi A. (2000) Diesel-Spray Ignition and Premixed-Burn Behavior, SAE Technical paper 2000-01- 0940. [Google Scholar]
  • Dec J.E., Espey C. (1998) Chemiluminescence Imaging of Autoignition in a DI Diesel Engine, SAE Technical paper 982685. [Google Scholar]
  • Hergart C., Barths H., Peters N. (1999) Modeling the Combustion in a Small-Bore Diesel Engine Using a Method Based on Representative Interactive Flamelets, SAE Technical paper 1999-01-3550 [Google Scholar]
  • Han Z., Uludogan A., Hampson G.J., Reitz R.D. (1996) Mechanism of Soot and NOx Emission Reduction Using Multiple-injection in a Diesel Engine, SAE Technical paper 960633. [Google Scholar]
  • Bordet N., Caillol C., Higelin P., Talon V. (2010) A Physical 0D Combustion Model Using Tabulated Chemistry with Presumed Probability Density Function Approach for Multi-Injection Diesel Engines, SAE Technical paper 2010-01-1493. [Google Scholar]
  • Woschni G. (1967) Universally applicable equation for the instantaneous heat transfer coefficient in the internal combustion engine, SAE Technical paper 670931. [Google Scholar]
  • Huber K., Woschni G., Zeilinger K. (1990) Investigations on heat transfer in internal combustion engines under low load and motoring conditions, SAE Technical paper 905018. [Google Scholar]
  • Dulbecco A., Lafossas F.A., Mauviot G., Poinsot T.J (2009) A New 0D Diesel HCCI Combustion Model Derived from a 3D CFD Approach with Detailed Tabulated Chemistry, Oil Gas Sci.Technol., 3, 259-284. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dulbecco A., Lafossas F.A., Poinsot T.J. (2009) A 0D Phenomenological Approach to model Diesel HCCI Combustion with Multi-Injection Strategies Using Probability Density Functions and Detailed Tabulated Chemistry, SAE Technical paper 2009-01-0678. [Google Scholar]
  • Naber J.D., Siebers D. (1996) Effects of gas density and vaporization on penetration and dispersion of diesel sprays, SAE Technical paper 960034. [Google Scholar]
  • Siebers D. (1999) Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization, SAE Technical paper 1999-01-0528. [Google Scholar]
  • Jaine T. (2004) Simulation zerodimensionnelle de la combustion dans un moteur Diesel a Injection Directe, PhD Thesis Universite d’Orleans. [Google Scholar]
  • Dronniou N. (2008) Etude theorique et experimentale des strategies de combustion homogene. Application aux moteurs Diesel pour vehicules industriels, PhD Thesis, Universite d’Orleans. [Google Scholar]
  • Bozza F., Gimelli A. (2007) Steady-state and Transient Operation Simulation of a Downsized Turbocharged SI Engine, SAE Technical paper 2007-01-0381. [Google Scholar]
  • Bozza F. (2007) 3D-1D Analyses of the Turbulent Flow Field, Burning Speed and Knock Occurrence in a Turbocharged SI Engine, SAE Technical paper 2007-24-0029. [Google Scholar]
  • Flynn P.F., Durett R.P., Hunter G.L., Loye A., Akinyemi O.C., Dec J.E., Westbrook C.K. (1999) Diesel Combustion: An Integrated View Combining Laser Diagnostics, Chemical Kinetics, And Empirical Validation, SAE Technical paper 1999- 01-0509. [Google Scholar]
  • Colin O., Benkenida A. (2004) The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion, Oil Gas Sci. Technol. 59, 6, 593-609. [Google Scholar]
  • Nishida K., Zhang W., Manabe T. (2007) Effects of Micro-Hole and Ultra-High Injection Pressure on Mixture Properties of D.I. Diesel Spray, SAE Technical paper 2007-01-1890. [Google Scholar]
  • Mauviot G. (2007) Developpement d’une modelisation phenomenologique de chambres de combustion de moteurs a piston par reduction de modele physique 3-D dans la perspective d’une integration dans un outil de simulation systeme, PhD Thesis, UPMC, French. [Google Scholar]
  • Pires Da Cruz A. (2004) Three-dimensional modeling of selfignition in HCCI and conventional Diesel engines, Combust. Sci. Technol. 176, 867-887. [Google Scholar]
  • Colin O., Pires Da Cruz A., Jay S. (2005) Detailed chemistry based auto-ignition model including low temperature phenomena applied to 3D engine calculations, Proc. Combust. Inst. 30, 2, 2649-2656. [CrossRef] [Google Scholar]
  • Subramanian G., Pires Da Cruz A., Colin O., Vervisch L. (2007) Modeling Engine Turbulent Auto-Ignition Using Tabulated Detailed Chemistry, SAE Technical paper 2007-01-0150. [Google Scholar]
  • Kee R.J., Rupley F.M., Miller J.A. (1989) Chemkin-II: A Fortran Chemical Kinetics Package for the Analysis of Gas-phase Chemical Kinetics, Report No. SAND89- 8009.UC401, Sandia National Laboratories. [Google Scholar]
  • Lutz A., Kee R.J., Miller J.A. (1987) Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Report No. SAND87-8248.UC-4, Sandia National Laboratories. [Google Scholar]
  • Curran H.J., Gaffuri P., Pitz W.J., Westbrook C.K. (1998) Combust. Flame 114, 1/2, 149-177. [CrossRef] [Google Scholar]
  • Dulbecco A. (2009) Modeling of Diesel HCCI Combustion and Its Impact on pollutant Emissions, PhD Thesis, MEGeP, English. [Google Scholar]
  • Weisser G., Boulouchos K. (1995) NOEMI – A Tool for the Precalculation of Nitric Oxide Emissions of DI Diesel Engines, The Working Process of the Internal Combustion Engine, Technical University Graz. [Google Scholar]
  • Jaine T., Higelin P. (2004) Moteur a allumage par compression, Techniques de l’ingenieur: Modelisation du cycle moteur BM 2 516 (French). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.