Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 5, September-October 2011
Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Page(s) 801 - 822
DOI https://doi.org/10.2516/ogst/2011116
Publié en ligne 22 septembre 2011
  • Apte S.V.,Gorokhovski M.,Moin P. (2003) LES of Atomizing Spray with Stochastic Modeling of Secondary Breakup, Int. J. Multiphase Flow 29, 1503-1522. [CrossRef] [Google Scholar]
  • Arai M., Tabata M., Hiroyasu H., Shimizu M. (1984) Disintegrating Process and Spray Characterization of Fuel Jet Injected by a Diesel Nozzle, SAE International, SAE paper 840275. [Google Scholar]
  • Arcoumanis C., Gavaises M. (1997) Effect of Fuel Injection Processes on the Structure of Diesel Sprays, SAE International, SAE paper 970799. [Google Scholar]
  • Arregle J.M., Pastor J.V., Ruiz S. (1999) The Influence of Injection Parameters on Diesel Spray Characteristics, SAE International, SAE paper 1999-01-0200. [Google Scholar]
  • Beale J.C.,Reitz R.D. (1999) Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model, Atomization Sprays 9, 623-650. [Google Scholar]
  • Beheshti N., Burluka A. (2004) Eulerian Modelling of Atomisation in Turbulent Flows, 19th Annual Meeting of the Institute for Liquid Atomization and Spray Systems (Europe), Nottingham, 6-8 September, 207-212. [Google Scholar]
  • Bharadwaj N.,Rutland C.,Chang S. (2009) Large Eddy Simulation Modelling of Spray-Induced Turbulence Effects, Int. J. Engine Res. 10, 97-119. [CrossRef] [Google Scholar]
  • Bianchi G. Minelli F., Scardovelli R., Zaleski S. (2007) 3D Large Scale Simulation of the High-Speed Liquid Jet Atomization, SAE International, SAE paper 2007-01-0244. [Google Scholar]
  • Chehroudi B., Chen S.-H., Bracco F.V., Onuma Y. (1985) On the Intact Core of Full-Cone Sprays, SAE International, SAE paper 850126. [Google Scholar]
  • Cousin J., Desjonqueres P. (2003) A New Approach for the Application of the Maximum Entropy Formalism on Sprays, ICLASS 2003, Sorrento, Italy, 13-17 July. [Google Scholar]
  • De Villiers E., Gosman A., Weller H. (2004) Large Eddy Simulation of Primary Diesel Spray Atomization, SAE International, SAE paper 2004-01-0100. [Google Scholar]
  • Demoulin F.X.,Beau P.A.,Blokkeel G.,Mura A.,Borghi R. (2007) A New Model for Turbulent Flows with Large Density Fluctuations: Application to Liquid Atomization, Atomization Sprays 17, 315-345. [CrossRef] [Google Scholar]
  • Dent J.C. (1971) Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration, SAE International, SAE paper 710571. [Google Scholar]
  • Elkotb M. (1982) Fuel Atomization for Spray Modelling, Progr. Energ. Combust. Sci. 8, 61-90. [CrossRef] [Google Scholar]
  • Faeth G. (1996) Spray Combustion Phenomena, Symp. Int. Combust. 26, 1593-1612. [CrossRef] [Google Scholar]
  • Fuster D.,Bague A.,Boeck T.,Moyne L.L.,Leboissetier A.,Popinet S.,Ray P.,Scardovelli R.,Zaleski S. (2009) Simulation of Primary Atomization With an Octree Adaptive Mesh Refinement and VOF Method, Int. J. Multiphase Flow 35, 550-565. [CrossRef] [Google Scholar]
  • Heywood J. (1988) Internal Combustion Engine Fundamentals McGraw-Hill. [Google Scholar]
  • Hiroyasu H., Arai M. (1990) Structures of Fuel Sprays in Diesel Engines, SAE International, SAE paper 900475. [Google Scholar]
  • Hiroyasu H., Arai M., Tabata M. (1989) Empirical Equations for the Sauter Mean Diameter of a Diesel Spray, SAE International, SAE paper 890464. [Google Scholar]
  • Hiroyasu H.,Kadota T.,Tasaka S. (1978) Study of the Penetration of Diesel, JSME International Journal 44, 3208-3219. [Google Scholar]
  • Huh K.Y., Gosman A.D. (1991) A Phenomenological Model of Diesel Spray Atomization, Proceedings of International Conference on Multiphase Flows, Tsukuba, Japan, 24-27 September [Google Scholar]
  • Ibrahim E.A.,Yang H.Q.,Przekwas A.J. (1993) Modeling of Spray Droplets Deformation and Breakup, J. Propuls. Power 9, 651-654. [CrossRef] [Google Scholar]
  • Kuensberg Sarre C., Kong S.C., Reitz R.D. (1999) Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays, SAE International, SAE paper 1999-01-0912. [Google Scholar]
  • LeMoyne L. (2010) Trends in atomization theory, Int. J. Spray Combustion Dynamics 2, 49-84. [CrossRef] [Google Scholar]
  • LeMoyne L.,Maroteaux F.,Guibert P.,Murat M. (1997) Model and Measure of Flows at the Intake of Engines, J. Phys. III France 7, 1927-1940. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Lebas R.,Menard T.,Beau P.,Berlemont A.,Demoulin F. (2009) Numerical simulation of primary break-up and atomization: DNS and modelling study, Int. J. Multiphase Flow 35, 247-260. [CrossRef] [Google Scholar]
  • Lee K.,Aalburg C.,Diez F.J.,Faeth G.M.,Sallam K.A. (2007) Primary breakup of turbulent round liquid jets in uniform crossflows, AIAA J. 45, 1907-1916. [CrossRef] [Google Scholar]
  • Lefebvre H.A. (1989) Atomization and Sprays. Combustion: An International Series, Hemisphere, New-York, 434 p. [Google Scholar]
  • Levich V. (1962) Physicochemical Hydrodynamics, Prentice-Hall Inc., pp. 639-650. [Google Scholar]
  • Levy N., Amara, S., Champoussin J.C. (1998) Simulation of a Diesel Jet Assumed Fully Atomized at the Nozzle Exit, SAE International, SAE paper 981067. [Google Scholar]
  • Long W., Hosoya H., Mashimo T., Kobayashi K., Obokata T., Durst F., Xu T. (1994) Analytical Functions to Match Size Distributions in Diesel-Sprays, International Symposium COMODIA Yokohama, Japan, 11-14 July [Google Scholar]
  • Menard T.,Beau P.,Tanguy S.,Demoulin F.,Berlemont A. (2005) Primary break-up: DNS of liquid jet to improve atomization modelling, WIT Transactions on Engineering Sciences 55, 343-352. [Google Scholar]
  • Merrington A.C., Richardson E.G. (1947) The break-up of liquid jets, Proc. Phys. Soc. 59, 1. [Google Scholar]
  • Naber J.D., Siebers D.L. (1996) Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays, SAE International, SAE paper 960034. [Google Scholar]
  • Nishimura A., Assanis D.N. (2000) A Model for Primary Diesel Fuel Atomization Based on Cavitation Bubble Collapse Energy, ICLASS 2000, Pasadena, CA, 16-20 July, pp. 1249-1256. [Google Scholar]
  • O’Rourke P.J., Amsden A.A. (1987) The Tab Method for Numerical Calculation of Spray Droplet Breakup, SAE International, SAE paper 872089. [Google Scholar]
  • Park S.W., Lee C.S., Kim H.J. (2003) Investigation of Atomization Characteristics and Prediction Accuracy of Hybrid Models for High-Speed Diesel Fuel Sprays, SAE International, SAE paper 2003-01-1045. [Google Scholar]
  • Patterson M.A., Reitz R.D. (1998) Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions, SAE International, SAE paper 980131. [Google Scholar]
  • Peng Karrholm F., Weller H., Nordin N. (2007) Modelling injector flow including cavitation effects for Diesel applications, Proceedings of FEDSM2007 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, CA, USA, 30 July - 2 August [Google Scholar]
  • Popinet S. (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Computat. Phys. 190, 572-600. [NASA ADS] [CrossRef] [Google Scholar]
  • Ranz W.E. (1958) Some Experiments on Orifice Sprays, Can. J. Chem. Eng. 36, 175-181. [CrossRef] [Google Scholar]
  • Reitz R. (1987) Modeling atomization processes in high pressure vaporizing sprays, Atomization Sprays 3, 309-337. [Google Scholar]
  • Reitz R.D., Bracco F.B. (1979) On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions, SAE International, SAE paper 790494. [Google Scholar]
  • Reitz R.D., Diwakar R. (1987) Structure of High-Pressure Fuel Sprays, SAE International, SAE paper 870598. [Google Scholar]
  • Ruiz F.,Chigier N. (1991) Parametric Experiments on Liquid Jet Atomization Spray Angle, Atomization Sprays 1, 23-45. [Google Scholar]
  • Sandia National Laboratories (2010) online database, http://www.sandia.gov/ecn/cvdata/dsearch.php. [Google Scholar]
  • Schihl P., Bryzik W., Altreya A. (1996) Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model, SAE International, SAE paper 960773. [Google Scholar]
  • Shannon C.E. (1948) A Mathematical Theory of Communication, Bell Syst. Tech. J. 27, 379-423, 623-656. [Google Scholar]
  • Siebers D.L. (1999) Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization, SAE International, SAE paper 1999-01-0528. [Google Scholar]
  • Su T.F., Patterson M.A., Reitz R.D., Farrell F.V. (1996) Experimental and Numerical Studies of High Pressure Multiple Injection Sprays, SAE International, SAE paper 960861. [Google Scholar]
  • Tanner F.X. (1997) Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays, SAE International, SAE paper 970050. [Google Scholar]
  • Taylor G.I. (1950) The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to their Planes, Proc. R. Soc. London, 192-196. [Google Scholar]
  • Tomar G.,Fuster D.,Zaleski S.,Popinet S. (2010) Multiscale Simulations of Primary Atomization, Comput. Fluids 39, 1864-1874. [CrossRef] [MathSciNet] [Google Scholar]
  • Vallet A., Burluka A.A., Borghi R. (2001) Development of a Eulerian Model for the “Atomization” of a Liquid Jet, Atomization and Sprays 11, 24. [Google Scholar]
  • Varde K.S., Popa D.M., Varde L.K. (1984) Spray Angle and Atomization in Diesel Sprays, SAE International, SAE paper 841055. [Google Scholar]
  • Wakuri Y.,Fujii M.,Amitani T.,Tsuneya R. (1960) Studies of the Penetration of a Fuel Spray in a Diesel Engine, JSME International Journal 3, 123-130. [Google Scholar]
  • Wan Y.,Peters N. (1999) Scaling of Spray Penetration with Evaporation, Atomization and Sprays 9, 111-132. [Google Scholar]
  • Wu P.-K., Faeth G. (1995) Onset and End of Drop Formation Along the Surface of Turbulent Liquid Jets in Still Gases, Phys. Fluids 7 2915-2917. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.