Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Numéro 5, September-October 2011
Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Page(s) 845 - 853
DOI https://doi.org/10.2516/ogst/2011151
Publié en ligne 11 novembre 2011
  • Takahashi N., Shinjoh H., Iijima T., Suzuki T., Yamazaki K., Yokota K., Suzuki H., Miyoshi N., Matsumoto S., Tanizawa T., Tanaka T., Tateishi S., Kasahara K. (1996) The new concept 3- way catalyst for automotive lean-burn engine: NOx storage and reduction catalyst, Catal. Today 27, 63-69. [CrossRef] [Google Scholar]
  • Gill L., Blakeman P., Twigg M., Walker A. (2004) The use of NOx adsorber catalysts on diesel engines, Topics Catal. 28, 1-4, 157-164. [CrossRef] [Google Scholar]
  • Engström P., Amberntsson A., Skoglundh M., Fridell E., Smedler G. (1999) Sulphur dioxide interaction with NOx storage catalysts, Appl. Catal. B: Env. 22, 4, L241-L248. [CrossRef] [Google Scholar]
  • Mahzoul H., Limousy L., Brilhac J.F., Gilot P. (2000) Experimental study of SO2 adsorption on barium-based NOx adsorbers, J. Anal. Appl. Pyrolysis 56, 2, 179-193. [CrossRef] [Google Scholar]
  • Rohr F., Peter S.D., Lox E., Kögel M., Sassi A., Juste L., Rigaudeau C., Belot G., Gélin P., Primet M. (2005) On the mechanism of sulphur poisoning and regeneration of a commercial gasoline NOx-storage catalyst, Appl. Catal. B: Env. 56, 201-212. [CrossRef] [Google Scholar]
  • Elbouazzaoui S., Courtois X., Marecot P., Duprez D. (2004) Characterisation by TPR, XRD and NOx storage capacity measurements of the ageing by thermal treatment and SO2 poisoning of a Pt/Ba/Al NOx-trap model catalyst, Topics Catal. 30/31, 493-496. [CrossRef] [Google Scholar]
  • Fekete N., Kemmler R., Voigtländer D., Krutzsch B., Zimmer E., Wenniger G., Strehlau W., Tillaart J.A., Leyrer J., Lox E.S., Müller W. (1997) Evaluation of NOx storage catalysts for lean burn gasoline fueled passenger cars, SAE Technical paper 970746. [Google Scholar]
  • Jang B.H., Yeon T.H., Han H.S., Park Y.K., Yie J.E. (2001) Deterioration mode of barium-containing NOx storage catalyst, Catal. Lett. 77, 1-3, 21-28. [CrossRef] [Google Scholar]
  • Toops T.J., Bunting B.G., Nguyen K., Gopinath A. (2007) Effect of engine-based thermal aging on surface morphology and performance of Lean NOx Traps, Catal. Today 123, 285-292. [CrossRef] [Google Scholar]
  • Hepburn J.S., Thanasiu E., Dobson D.A., Watkins W.L. (1996) Experimental and modeling investigations of NOx trap performance, SAE Technical paper 962051. [Google Scholar]
  • Lesage T., Verrier C., Bazin P., Saussey J., Daturi M. (2003) Studying the NOx-trap mechanism over a Pt-Rh/Ba/Al2O3 catalyst by operando FT-IR spectroscopy, Phys. Chem. Chem. Phys. 5, 4435-4440. [CrossRef] [Google Scholar]
  • Amberntsson A., Fridell E., Skoglundh M. (2003) Influence of platinum and rhodium composition on the NOx storage and sulphur tolerance of a barium based NOx storage catalyst, Appl. Catal. B: Env. 46, 3, 429-439. [CrossRef] [Google Scholar]
  • Graham G.W., Jen H.W., Chun W., Sun H.P., Pan X.Q., McCabe R.W. (2004) Coarsening of Pt particles in a model NOx trap, Catal. Lett. 93, 129-134. [CrossRef] [Google Scholar]
  • Westerberg B., Fridell E. (2001) J. Mol. Catal. A: Chemistry 165, 249. [CrossRef] [Google Scholar]
  • Coronado J.M., Anderson J.A. (1999) J. Mol. Catal. A: Chemistry 138, 83. [CrossRef] [Google Scholar]
  • Lesage T., Verrier C., Bazin P., Saussey J., Daturi M. (2003) Phys. Chem. Chem. Phys. 5, 4435. [CrossRef] [Google Scholar]
  • Szailer T., Kwak J.H., Kim D.H., Szanyi J., Wang C., Peden C.H.F. (2006) Catal. Today 114, 86. [CrossRef] [Google Scholar]
  • Abdulhamid H., Dawody J., Fridell E., Skoglundh M. (2006) J. Catal. 244, 169. [CrossRef] [Google Scholar]
  • Fanson P.T., Horton M.R., Delgass W.N., Lauterbach J. (2003) Appl. Catal. B: Env. 46, 393. [CrossRef] [Google Scholar]
  • Milt V.G., Querini C.A., Miró E.E., Ulla M.A. (2003) J. Catal. 220, 424. [CrossRef] [Google Scholar]
  • Kim D.H., Kwak J.H., Szanyi J., Burton S.D., Peden C.H.F. (2007) Water-induced bulk Ba(NO3)2 formation from NO2 exposed thermally aged BaO/Al2O3, Appl. Catal. B: Env. 72, 233-239. [CrossRef] [Google Scholar]
  • Su Y., Amiridis M.D. (2004) In situ FTIR studies of the mechanism of NOx storage and reduction on Pt/Ba/Al2O3 catalysts, Catal. Today 96, 31-41. [CrossRef] [Google Scholar]
  • Halkides T.I., Kondrarides D.I., Verykios X.E. (2002) Mechanistic study of the reduction of NO by C3H6 in the presence of oxygen over Rh/TiO2 catalysts, Catal. Today 73, 213-221. [CrossRef] [Google Scholar]
  • Ouyang F., Haneda M., Sun W., Kindaichi Y., Hamada H. (2008) Roles of Surface Nitrogen Oxides in Propene Activation and NO Reduction on Ag/Al2O3, Kinet. Catal. 49, 236-244. [CrossRef] [Google Scholar]
  • Courson C., Khalfi A., Mahzoul H., Hodjati S., Moral N., Kiennemann A., Gilot P. (2002) Experimental study of the SO2 removal over a NOx trap catalyst, Catal. Commun. 3, 10, 471-477. [CrossRef] [Google Scholar]
  • Lesage T., Saussey J., Malo S., Hervieu M., Hedouin C., Blanchard G., Daturi M. (2007) Operando FTIR study of NOx storage over a Pt/K/Mn/Al2O3-CeO2 catalyst, Appl. Catal. B: Env. 72, 166-177. [CrossRef] [Google Scholar]
  • Takeuchi M., Matsumoto S. (2004) NOx storage-reduction catalysts for gasoline engines, Topics Catal. 28, 151-156. [CrossRef] [Google Scholar]
  • Rodriguez F. (2001) Thèse, Université de Pierre et Marie Curie (Paris VI). [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.