Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 66, Number 5, September-October 2011
Dossier: R&D for Cleaner and Fuel Efficient Engines and Vehicles
Page(s) 801 - 822
Published online 22 September 2011
  • Apte S.V.,Gorokhovski M.,Moin P. (2003) LES of Atomizing Spray with Stochastic Modeling of Secondary Breakup, Int. J. Multiphase Flow 29, 1503-1522. [CrossRef] [Google Scholar]
  • Arai M., Tabata M., Hiroyasu H., Shimizu M. (1984) Disintegrating Process and Spray Characterization of Fuel Jet Injected by a Diesel Nozzle, SAE International, SAE paper 840275. [Google Scholar]
  • Arcoumanis C., Gavaises M. (1997) Effect of Fuel Injection Processes on the Structure of Diesel Sprays, SAE International, SAE paper 970799. [Google Scholar]
  • Arregle J.M., Pastor J.V., Ruiz S. (1999) The Influence of Injection Parameters on Diesel Spray Characteristics, SAE International, SAE paper 1999-01-0200. [Google Scholar]
  • Beale J.C.,Reitz R.D. (1999) Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model, Atomization Sprays 9, 623-650. [Google Scholar]
  • Beheshti N., Burluka A. (2004) Eulerian Modelling of Atomisation in Turbulent Flows, 19th Annual Meeting of the Institute for Liquid Atomization and Spray Systems (Europe), Nottingham, 6-8 September, 207-212. [Google Scholar]
  • Bharadwaj N.,Rutland C.,Chang S. (2009) Large Eddy Simulation Modelling of Spray-Induced Turbulence Effects, Int. J. Engine Res. 10, 97-119. [CrossRef] [Google Scholar]
  • Bianchi G. Minelli F., Scardovelli R., Zaleski S. (2007) 3D Large Scale Simulation of the High-Speed Liquid Jet Atomization, SAE International, SAE paper 2007-01-0244. [Google Scholar]
  • Chehroudi B., Chen S.-H., Bracco F.V., Onuma Y. (1985) On the Intact Core of Full-Cone Sprays, SAE International, SAE paper 850126. [Google Scholar]
  • Cousin J., Desjonqueres P. (2003) A New Approach for the Application of the Maximum Entropy Formalism on Sprays, ICLASS 2003, Sorrento, Italy, 13-17 July. [Google Scholar]
  • De Villiers E., Gosman A., Weller H. (2004) Large Eddy Simulation of Primary Diesel Spray Atomization, SAE International, SAE paper 2004-01-0100. [Google Scholar]
  • Demoulin F.X.,Beau P.A.,Blokkeel G.,Mura A.,Borghi R. (2007) A New Model for Turbulent Flows with Large Density Fluctuations: Application to Liquid Atomization, Atomization Sprays 17, 315-345. [Google Scholar]
  • Dent J.C. (1971) Basis for the Comparison of Various Experimental Methods for Studying Spray Penetration, SAE International, SAE paper 710571. [Google Scholar]
  • Elkotb M. (1982) Fuel Atomization for Spray Modelling, Progr. Energ. Combust. Sci. 8, 61-90. [CrossRef] [Google Scholar]
  • Faeth G. (1996) Spray Combustion Phenomena, Symp. Int. Combust. 26, 1593-1612. [CrossRef] [Google Scholar]
  • Fuster D.,Bague A.,Boeck T.,Moyne L.L.,Leboissetier A.,Popinet S.,Ray P.,Scardovelli R.,Zaleski S. (2009) Simulation of Primary Atomization With an Octree Adaptive Mesh Refinement and VOF Method, Int. J. Multiphase Flow 35, 550-565. [CrossRef] [Google Scholar]
  • Heywood J. (1988) Internal Combustion Engine Fundamentals McGraw-Hill. [Google Scholar]
  • Hiroyasu H., Arai M. (1990) Structures of Fuel Sprays in Diesel Engines, SAE International, SAE paper 900475. [Google Scholar]
  • Hiroyasu H., Arai M., Tabata M. (1989) Empirical Equations for the Sauter Mean Diameter of a Diesel Spray, SAE International, SAE paper 890464. [Google Scholar]
  • Hiroyasu H.,Kadota T.,Tasaka S. (1978) Study of the Penetration of Diesel, JSME International Journal 44, 3208-3219. [Google Scholar]
  • Huh K.Y., Gosman A.D. (1991) A Phenomenological Model of Diesel Spray Atomization, Proceedings of International Conference on Multiphase Flows, Tsukuba, Japan, 24-27 September [Google Scholar]
  • Ibrahim E.A.,Yang H.Q.,Przekwas A.J. (1993) Modeling of Spray Droplets Deformation and Breakup, J. Propuls. Power 9, 651-654. [Google Scholar]
  • Kuensberg Sarre C., Kong S.C., Reitz R.D. (1999) Modeling the Effects of Injector Nozzle Geometry on Diesel Sprays, SAE International, SAE paper 1999-01-0912. [Google Scholar]
  • LeMoyne L. (2010) Trends in atomization theory, Int. J. Spray Combustion Dynamics 2, 49-84. [CrossRef] [Google Scholar]
  • LeMoyne L.,Maroteaux F.,Guibert P.,Murat M. (1997) Model and Measure of Flows at the Intake of Engines, J. Phys. III France 7, 1927-1940. [CrossRef] [EDP Sciences] [OGST] [Google Scholar]
  • Lebas R.,Menard T.,Beau P.,Berlemont A.,Demoulin F. (2009) Numerical simulation of primary break-up and atomization: DNS and modelling study, Int. J. Multiphase Flow 35, 247-260. [Google Scholar]
  • Lee K.,Aalburg C.,Diez F.J.,Faeth G.M.,Sallam K.A. (2007) Primary breakup of turbulent round liquid jets in uniform crossflows, AIAA J. 45, 1907-1916. [CrossRef] [Google Scholar]
  • Lefebvre H.A. (1989) Atomization and Sprays. Combustion: An International Series, Hemisphere, New-York, 434 p. [Google Scholar]
  • Levich V. (1962) Physicochemical Hydrodynamics, Prentice-Hall Inc., pp. 639-650. [Google Scholar]
  • Levy N., Amara, S., Champoussin J.C. (1998) Simulation of a Diesel Jet Assumed Fully Atomized at the Nozzle Exit, SAE International, SAE paper 981067. [Google Scholar]
  • Long W., Hosoya H., Mashimo T., Kobayashi K., Obokata T., Durst F., Xu T. (1994) Analytical Functions to Match Size Distributions in Diesel-Sprays, International Symposium COMODIA Yokohama, Japan, 11-14 July [Google Scholar]
  • Menard T.,Beau P.,Tanguy S.,Demoulin F.,Berlemont A. (2005) Primary break-up: DNS of liquid jet to improve atomization modelling, WIT Transactions on Engineering Sciences 55, 343-352. [Google Scholar]
  • Merrington A.C., Richardson E.G. (1947) The break-up of liquid jets, Proc. Phys. Soc. 59, 1. [Google Scholar]
  • Naber J.D., Siebers D.L. (1996) Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays, SAE International, SAE paper 960034. [Google Scholar]
  • Nishimura A., Assanis D.N. (2000) A Model for Primary Diesel Fuel Atomization Based on Cavitation Bubble Collapse Energy, ICLASS 2000, Pasadena, CA, 16-20 July, pp. 1249-1256. [Google Scholar]
  • O’Rourke P.J., Amsden A.A. (1987) The Tab Method for Numerical Calculation of Spray Droplet Breakup, SAE International, SAE paper 872089. [Google Scholar]
  • Park S.W., Lee C.S., Kim H.J. (2003) Investigation of Atomization Characteristics and Prediction Accuracy of Hybrid Models for High-Speed Diesel Fuel Sprays, SAE International, SAE paper 2003-01-1045. [Google Scholar]
  • Patterson M.A., Reitz R.D. (1998) Modeling the Effects of Fuel Spray Characteristics on Diesel Engine Combustion and Emissions, SAE International, SAE paper 980131. [Google Scholar]
  • Peng Karrholm F., Weller H., Nordin N. (2007) Modelling injector flow including cavitation effects for Diesel applications, Proceedings of FEDSM2007 5th Joint ASME/JSME Fluids Engineering Conference, San Diego, CA, USA, 30 July - 2 August [Google Scholar]
  • Popinet S. (2003) Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries, J. Computat. Phys. 190, 572-600. [Google Scholar]
  • Ranz W.E. (1958) Some Experiments on Orifice Sprays, Can. J. Chem. Eng. 36, 175-181. [CrossRef] [Google Scholar]
  • Reitz R. (1987) Modeling atomization processes in high pressure vaporizing sprays, Atomization Sprays 3, 309-337. [Google Scholar]
  • Reitz R.D., Bracco F.B. (1979) On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions, SAE International, SAE paper 790494. [Google Scholar]
  • Reitz R.D., Diwakar R. (1987) Structure of High-Pressure Fuel Sprays, SAE International, SAE paper 870598. [Google Scholar]
  • Ruiz F.,Chigier N. (1991) Parametric Experiments on Liquid Jet Atomization Spray Angle, Atomization Sprays 1, 23-45. [Google Scholar]
  • Sandia National Laboratories (2010) online database, [Google Scholar]
  • Schihl P., Bryzik W., Altreya A. (1996) Analysis of Current Spray Penetration Models and Proposal of a Phenomenological Cone Penetration Model, SAE International, SAE paper 960773. [Google Scholar]
  • Shannon C.E. (1948) A Mathematical Theory of Communication, Bell Syst. Tech. J. 27, 379-423, 623-656. [Google Scholar]
  • Siebers D.L. (1999) Scaling Liquid-Phase Fuel Penetration in Diesel Sprays Based on Mixing-Limited Vaporization, SAE International, SAE paper 1999-01-0528. [Google Scholar]
  • Su T.F., Patterson M.A., Reitz R.D., Farrell F.V. (1996) Experimental and Numerical Studies of High Pressure Multiple Injection Sprays, SAE International, SAE paper 960861. [Google Scholar]
  • Tanner F.X. (1997) Liquid Jet Atomization and Droplet Breakup Modeling of Non-Evaporating Diesel Fuel Sprays, SAE International, SAE paper 970050. [Google Scholar]
  • Taylor G.I. (1950) The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to their Planes, Proc. R. Soc. London, 192-196. [Google Scholar]
  • Tomar G.,Fuster D.,Zaleski S.,Popinet S. (2010) Multiscale Simulations of Primary Atomization, Comput. Fluids 39, 1864-1874. [CrossRef] [MathSciNet] [Google Scholar]
  • Vallet A., Burluka A.A., Borghi R. (2001) Development of a Eulerian Model for the “Atomization” of a Liquid Jet, Atomization and Sprays 11, 24. [Google Scholar]
  • Varde K.S., Popa D.M., Varde L.K. (1984) Spray Angle and Atomization in Diesel Sprays, SAE International, SAE paper 841055. [Google Scholar]
  • Wakuri Y.,Fujii M.,Amitani T.,Tsuneya R. (1960) Studies of the Penetration of a Fuel Spray in a Diesel Engine, JSME International Journal 3, 123-130. [Google Scholar]
  • Wan Y.,Peters N. (1999) Scaling of Spray Penetration with Evaporation, Atomization and Sprays 9, 111-132. [Google Scholar]
  • Wu P.-K., Faeth G. (1995) Onset and End of Drop Formation Along the Surface of Turbulent Liquid Jets in Still Gases, Phys. Fluids 7 2915-2917. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.