IFP International Conference – Advances in Hybrid Powertrains
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Numéro 1, January-February 2010
IFP International Conference – Advances in Hybrid Powertrains
Page(s) 55 - 66
DOI https://doi.org/10.2516/ogst/2009060
Publié en ligne 5 novembre 2009
  • Guzzella L., Sciarretta A. (2005) Introduction to Modeling and Optimization in Vehicle Propulsion Systems, Springer, Berlin, Heidelberg. [Google Scholar]
  • Plett G.L. (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1 Background, J. Power Sources 134, 252-261. [CrossRef] [Google Scholar]
  • Piller S., Perrin M.Jossen A. (2001) Methods for state-ofcharge determination and their applications, J. Power Sources 96, 13-120. [Google Scholar]
  • Pop V., Bergveld H.J., Notten P.H.L.Regtien P.P.L. (2005) State-of-the-art of battery state-of-charge determination, Meas. Sci. Technol. 16, R93-R110. [CrossRef] [Google Scholar]
  • Pop V., Danilov D., Bergveld H.J., Notten P.H.L., Regtien P.P.L. (2006) Adaptative state-of-charge indication system for Li-ion battery powered vehicle, The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition, Yokohama, Japan, 23-10-2006. [Google Scholar]
  • Pop V., Bergveld H.J., Op het Veld J.H.G., Regtien P.P.L., Danilov D.Notten P.H.L. (2006) Modeling battery behavior for accurate state-of-charge indication, J. Electrochem. Soc. 153, A2013-A2022. [CrossRef] [Google Scholar]
  • Thele M., Buller S., Sauer D.U., De Doncker R.W.Karden E. (2005) Hybrid modeling of lead-acid batteries in frequency and time domain, J. Power Sources 144, 461-466. [CrossRef] [Google Scholar]
  • Kuhn E, Forgez C.Friedrich G. (2004) Modeling diffusive phenomena using non integer derivatives Application NiMH batteries, Eur. Phys. J.-Appl. Phys. 25, 183-190. [CrossRef] [OGST] [MathSciNet] [Google Scholar]
  • Kuhn E., Forgez C., Lagonotte P.Friedrich G. (2006) Modelling Ni-mH battery using Cauer and Foster structures, J. Power Sources 158, 1490-1497. [CrossRef] [Google Scholar]
  • Takano K., Nozaki K., Saito Y., Negishi A., Kato K.Yamaguchi Y. (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery, J. Power Sources 90, 214-223. [CrossRef] [Google Scholar]
  • Thele M., Bohlen O., Sauer D.U.Karden E. (2008) Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept, J. Power Sources 175, 635-643. [CrossRef] [Google Scholar]
  • Paxton B.Newman J. (1997) Modeling of nickel/metal hydride batteries, J. Electrochem. Soc. 144, 3818-3831. [CrossRef] [Google Scholar]
  • Gu W.B., Wang C.Y., Li S.M., Geng M.M.Liaw B.Y. (1999) Modeling discharge and charge characteristics of nickel-metal hydride batteries, Electrochim. Acta 44, 4525-4541. [CrossRef] [Google Scholar]
  • Wu B., Mohammed M., Brigham D., Elder R.White R.E. (2001) A non-isothermal model of a nickel-metal hydride cell, J. Power Sources 101, 149-157. [CrossRef] [Google Scholar]
  • Wu B., Dougal R.White R.E. (2001) Resistive companion battery modeling for electric circuit simulations, J. Power Sources 93, 186-200. [CrossRef] [Google Scholar]
  • De Vidts P., Delgado J.White R.E. (1995) Mathematical Modeling for the Discharge of a Metal Hydride Electrode, J. Electrochem. Soc. 142, 4006-4013. [CrossRef] [Google Scholar]
  • Botte G.G., Subramanian V.R.White R.E. (2000) Mathematical modeling of secondary lithium batteries, Electrochim. Acta 45, 2595-2609. [CrossRef] [Google Scholar]
  • Ning G., White R.E.Popov B.N. (2006) A generalized cycle life model of rechargeable Li-ion batteries, Electrochim. Acta 51, 2012-2022. [CrossRef] [Google Scholar]
  • Santhanagopalan S.White R.E. (2006) Online estimation of the state of charge of a lithium ion cell, J. Power Sources 161, 1346-1355. [CrossRef] [Google Scholar]
  • Zhang Q.White R.E. (2007) Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model, J. Power Sources 165, 880-886. [CrossRef] [Google Scholar]
  • Sciarretta A., Sauvant-Moynot V., Faille I. (2008) Advances in model-based SoC determination for HEV traction batteries, AEA 2008, 4th European Conference on Alternative Energies for the Automotive Industries, paper 13. [Google Scholar]
  • Gu W.B.Wang C.-Y. (2000) Thermal-electrochemical Modeling of Battery systems, J. Electrochem. Soc. 147, 2910-2922. [CrossRef] [Google Scholar]
  • Huet F. (1998) A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries, J. Power Sources 70, 59-69. [CrossRef] [Google Scholar]
  • FreedomCar (2003) FreedomCar Battery Test Manual For Power-assist hybrid Electric vehicle, INEEL/DOE. [Google Scholar]
  • Gu W.B., Wang C.Y.Liaw B.Y. (1998) Micro-macroscopic coupled modeling of batteries and fuel cells, J. Electrochem. Soc. 145, 3418-3427. [CrossRef] [Google Scholar]
  • Newmann J., Thomas-Alyea K.E. (2004) Electrochemical systems, 3rd ed., John Wiley & Sons, New York. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.