IFP International Conference – Advances in Hybrid Powertrains
Open Access
Oil Gas Sci. Technol. – Rev. IFP
Volume 65, Number 1, January-February 2010
IFP International Conference – Advances in Hybrid Powertrains
Page(s) 55 - 66
DOI https://doi.org/10.2516/ogst/2009060
Published online 05 November 2009
  • Guzzella L., Sciarretta A. (2005) Introduction to Modeling and Optimization in Vehicle Propulsion Systems, Springer, Berlin, Heidelberg. [Google Scholar]
  • Plett G.L. (2004) Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs: Part 1 Background, J. Power Sources 134, 252-261. [CrossRef] [Google Scholar]
  • Piller S., Perrin M.Jossen A. (2001) Methods for state-ofcharge determination and their applications, J. Power Sources 96, 13-120. [Google Scholar]
  • Pop V., Bergveld H.J., Notten P.H.L.Regtien P.P.L. (2005) State-of-the-art of battery state-of-charge determination, Meas. Sci. Technol. 16, R93-R110. [CrossRef] [Google Scholar]
  • Pop V., Danilov D., Bergveld H.J., Notten P.H.L., Regtien P.P.L. (2006) Adaptative state-of-charge indication system for Li-ion battery powered vehicle, The 22nd International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exposition, Yokohama, Japan, 23-10-2006. [Google Scholar]
  • Pop V., Bergveld H.J., Op het Veld J.H.G., Regtien P.P.L., Danilov D.Notten P.H.L. (2006) Modeling battery behavior for accurate state-of-charge indication, J. Electrochem. Soc. 153, A2013-A2022. [CrossRef] [Google Scholar]
  • Thele M., Buller S., Sauer D.U., De Doncker R.W.Karden E. (2005) Hybrid modeling of lead-acid batteries in frequency and time domain, J. Power Sources 144, 461-466. [CrossRef] [Google Scholar]
  • Kuhn E, Forgez C.Friedrich G. (2004) Modeling diffusive phenomena using non integer derivatives Application NiMH batteries, Eur. Phys. J.-Appl. Phys. 25, 183-190. [CrossRef] [OGST] [MathSciNet] [Google Scholar]
  • Kuhn E., Forgez C., Lagonotte P.Friedrich G. (2006) Modelling Ni-mH battery using Cauer and Foster structures, J. Power Sources 158, 1490-1497. [CrossRef] [Google Scholar]
  • Takano K., Nozaki K., Saito Y., Negishi A., Kato K.Yamaguchi Y. (2000) Simulation study of electrical dynamic characteristics of lithium-ion battery, J. Power Sources 90, 214-223. [CrossRef] [Google Scholar]
  • Thele M., Bohlen O., Sauer D.U.Karden E. (2008) Development of a voltage-behavior model for NiMH batteries using an impedance-based modeling concept, J. Power Sources 175, 635-643. [CrossRef] [Google Scholar]
  • Paxton B.Newman J. (1997) Modeling of nickel/metal hydride batteries, J. Electrochem. Soc. 144, 3818-3831. [CrossRef] [Google Scholar]
  • Gu W.B., Wang C.Y., Li S.M., Geng M.M.Liaw B.Y. (1999) Modeling discharge and charge characteristics of nickel-metal hydride batteries, Electrochim. Acta 44, 4525-4541. [CrossRef] [Google Scholar]
  • Wu B., Mohammed M., Brigham D., Elder R.White R.E. (2001) A non-isothermal model of a nickel-metal hydride cell, J. Power Sources 101, 149-157. [CrossRef] [Google Scholar]
  • Wu B., Dougal R.White R.E. (2001) Resistive companion battery modeling for electric circuit simulations, J. Power Sources 93, 186-200. [CrossRef] [Google Scholar]
  • De Vidts P., Delgado J.White R.E. (1995) Mathematical Modeling for the Discharge of a Metal Hydride Electrode, J. Electrochem. Soc. 142, 4006-4013. [CrossRef] [Google Scholar]
  • Botte G.G., Subramanian V.R.White R.E. (2000) Mathematical modeling of secondary lithium batteries, Electrochim. Acta 45, 2595-2609. [CrossRef] [Google Scholar]
  • Ning G., White R.E.Popov B.N. (2006) A generalized cycle life model of rechargeable Li-ion batteries, Electrochim. Acta 51, 2012-2022. [CrossRef] [Google Scholar]
  • Santhanagopalan S.White R.E. (2006) Online estimation of the state of charge of a lithium ion cell, J. Power Sources 161, 1346-1355. [CrossRef] [Google Scholar]
  • Zhang Q.White R.E. (2007) Comparison of approximate solution methods for the solid phase diffusion equation in a porous electrode model, J. Power Sources 165, 880-886. [CrossRef] [Google Scholar]
  • Sciarretta A., Sauvant-Moynot V., Faille I. (2008) Advances in model-based SoC determination for HEV traction batteries, AEA 2008, 4th European Conference on Alternative Energies for the Automotive Industries, paper 13. [Google Scholar]
  • Gu W.B.Wang C.-Y. (2000) Thermal-electrochemical Modeling of Battery systems, J. Electrochem. Soc. 147, 2910-2922. [CrossRef] [Google Scholar]
  • Huet F. (1998) A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries, J. Power Sources 70, 59-69. [Google Scholar]
  • FreedomCar (2003) FreedomCar Battery Test Manual For Power-assist hybrid Electric vehicle, INEEL/DOE. [Google Scholar]
  • Gu W.B., Wang C.Y.Liaw B.Y. (1998) Micro-macroscopic coupled modeling of batteries and fuel cells, J. Electrochem. Soc. 145, 3418-3427. [CrossRef] [Google Scholar]
  • Newmann J., Thomas-Alyea K.E. (2004) Electrochemical systems, 3rd ed., John Wiley & Sons, New York. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.