Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 72, Number 4, July–August 2017
Article Number 22
Number of page(s) 24
DOI https://doi.org/10.2516/ogst/2017021
Published online 06 September 2017
  • Audigane P., Gaus I., Czernichowski-Lauriol I., Pruess K., Xu T. (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, Am. J. Sci. 307, 2007, 974–1008. [CrossRef] [Google Scholar]
  • Bader A.G., Thibeau S., Vincké O., Delprat Jannaud F., Saysset S., Joffre G.H., Giger F.M., David M., Gimenez M., Dieulin A., Copin D. (2014) CO2 storage capacity evaluation in deep saline aquifers for an industrial pilot selection. Methodology and results of the France Nord project, Energy Procedia 63, 2779–2788. [CrossRef] [Google Scholar]
  • Baker J.C., Bai G.P., Hamilton P.J., Golding S.D., Keene J.B. (1995) Continental-scale magmatic carbon dioxide seepage recorded by dawsonite in the Bowen-Gunnedah-Sydney basin system, Eastern Australia, Int. J. Sediment Res. A65, 3, 522–530. [Google Scholar]
  • Bazin B., Brosse É, Sommer F. (1997) Chemistry of oil-field brines in relation to diagenesis of reservoirs. 1. Use of mineral stability fields to reconstruct in situ water composition. Example of the Mahakam basin, Mar. Pet. Geol. 14, 5, 481–495. [CrossRef] [Google Scholar]
  • Bénézeth P., Palmer D.A., Anovitz L.M., Horita J. (2007) Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochim. Cosmochim. Acta 71, 4438–4455. [CrossRef] [Google Scholar]
  • Bennehard M. (1970) Contribution à l’étude minéralogique et sédimentologique des terrains triasiques dans quelques sondages du bassin de Paris, PhD Univ, Toulouse, p. 282. [Google Scholar]
  • Bouc O., Fabriol H., Brosse É., Kalaydjian F., Farret R., Gombert P.H., Berest P., Lagneau V., Pereira J.-M., Fen-Chong T. (2011) Lignes de conduite pour la sécurité d’un site de stockage géologique de CO2, BRGM/RP-60369-FR 154, 3 annexes. [EDP Sciences] [Google Scholar]
  • Bourquin S., Robin C., Guillocheau F., Gaulier J.-M. (2002) Three-dimensional analysis of the Keuper of the Paris Basin: Discrimination between tectonics, eustasy and sediment supply in the stratigraphic record, Mar. Pet. Geol. 19, 469–498. [Google Scholar]
  • BRGM (2008) Évaluation du potentiel géothermique des réservoirs clastiques du Trias du Bassin de Paris, Rapport final RP-56463-FR. [Google Scholar]
  • Brooks R.H., Corey A.T. (1966) Properties of porous media affecting fluid flow, J. Irrig. Drain. Eng., 92, 61–90. [Google Scholar]
  • Brosse E., Fabriol H., Fleury M., Grataloup S., Lombard J.M. (2010a) CO2 storage in the struggle against climate change, Oil Gas Sci. Technol. – Rev. IFP 65, 3, 369–373. [CrossRef] [EDP Sciences] [Google Scholar]
  • Brosse É., Badinier G., Blanchard F., Caspard E., Collin P.Y., Delmas J., Vidal-Gilbert S. (2010b) Selection and characterization of geological sites able to host a pilot-scale CO2 storage in the Paris Basin (GéoCarbone-PICOREF), Oil Gas Sci. Technol. – Rev. IFP 65, 3, 375–403. [Google Scholar]
  • Comité des Techniciens ELF (1991) Monographies des principaux champs pétroliers de France. Bulletin des centres de recherches Exploration-production Elf-Aquitaine. Mémoire 14. 2-901026-354. [Google Scholar]
  • Coudrain-Ribstein A., Gouze P., de Marsily G. (1998) Temperature-carbone dioxide partial pressure trends in confined aquifers, Chem. Geol. 145, 73–89. [CrossRef] [Google Scholar]
  • Delmas J., Brosse É., Houel P. (2010) Petrophysical properties of the middle Jurassic carbonates in the PICOREF Sector (South Champagne, Paris Basin, France), Oil Gas Sci. Technol. – Rev. IFP 65, 3, 405–434. [Google Scholar]
  • Delmas J., Houel P., Vially R. (2002) Paris Basin – petroleum potential, IFP Regional Report n° 59994. [Google Scholar]
  • De Lucia M., Kempka T., Kühn M. (2014) A coupling alternative to reactive transport simulations for long-term prediction of chemical reactions in heterogeneous CO2 storage systems, Geosci. Model Dev. Discuss. 7, 6217–6261. [CrossRef] [Google Scholar]
  • Eschard R. et al. (1998) Combining sequence stratigraphy, geostatistical simulations, and production data for modeling a fluvial reservoir in the Chaunoy field (Triassic, France), AAPG Bull. 32, 4, 545–568. [Google Scholar]
  • Fornel A., Roggero F., Vincké O. (2011) Simulations d’injection de CO2 dans l’aquifère salin du Trias Ouest – Projet France Nord, IFPEN, Report No. 61765. [Google Scholar]
  • Fornel A., Delaplace P., Vincké O. (2012) Projet France Nord - Sensibilité des paramètres du modèle sur la capacité de stockage de CO2 en 50 ans dans la zone du Keuper Sud, IFPEN, Report No. 62575. [Google Scholar]
  • Gao Y., Liu L., Hu W. (2009) Petrology and isotopic geochemistry of dawsonite-bearing sandstones in Hailaer basin, northeastern China, Appl. Geochem. 24, 1724–1738. [CrossRef] [Google Scholar]
  • Gonçalvès J., Violette S., Guillocheau F., Robin C., Pagel M., Bruel D., Ledoux E. (2004) Contribution of a three-dimensional regional scale basin model to the study of the past fluid flow evolution and the present hydrology of the Paris Basin, France, Basin Res. 16, 4, 569–586. [CrossRef] [Google Scholar]
  • Guillocheau F., Robin C., Allemand P., Bourquin S., Brault N., Dromart G., Friedenberg R., Garcia J.-P., Gaulier J.-M., Gaumet F., Grosdoy B., Hanot F., Le Strat P., Mettraux M., Nalpas T., Prijac C., Rigoltet C., Serrano O., Grandjean G. (2000) Meso-Cenozoic geodynamic evolution of the Paris Basin: 3D stratigraphic constraints, Geodin. Acta 13, 4, 189–245. [Google Scholar]
  • Hellevang H., Declercq J., Aagaard P. (2011) Why is dawsonite absent in CO2 charged reservoirs? Oil Gas Sci. Technol. – Rev. IFP 66, 1, 119–135. [CrossRef] [EDP Sciences] [Google Scholar]
  • Houel P., Euzen T. (1999) Atlas Régional du Trias de l’Ouest du Bassin Parisien, (modélisation des aquifères), Rapport IFP No. 53171 [Google Scholar]
  • Intergovernmental Panel on Climate Change (2005) IPCC special report on carbon dioxide capture and storage, Cambridge University Press, New York, NY, USA. [Google Scholar]
  • Johnson J.W., Nitao J.J., Knauss K.G. (2004) Reactive transport modeling of CO2 storage in saline aquifers to elucidate fundamental processes, trapping mechanisms and sequestration partitioning, in: S.J. Bains, R.H. Worden (eds), Geological storage of carbon dioxide, Geological Society Special Publications, London, pp. 107–128. [Google Scholar]
  • Kaszuba J.P., Viswanathan H.S., Carey J.W. (2011) Relative stability and significance of dawsonite and aluminum minerals in geologic carbon sequestration, Geophys. Res. Lett. 38, L08404. [CrossRef] [Google Scholar]
  • Kharaka Y.K., Hanor J.S. (2003) Deep fluids in the continents: I. Sedimentary basins, in: Drever J.I. (ed.), Holland H.D., Turekian K.K. (Executive Editors), Treatise on Geochemistry, Vol. 5, Elsever, pp. 499–540, ISBN 0-08-043751-6. [Google Scholar]
  • Lasaga A.C. (1984) Chemical kinetics of water-rock interactions, J. Geophys. Res. B 89, B6, 4009–4025. [CrossRef] [Google Scholar]
  • Lasaga A.C. (1995) Fundamental approaches to describing mineral dissolution and precipitation rates, in: White A.F., Brantley S.L. (eds), Reviews in mineralogy volume 31: Chemical weathering rates of silicate minerals, Washington, DC, Mineralogical Society of America, pp. 23–86. [Google Scholar]
  • Lasaga A.C. (1998) Kinetic theory in Earth Sciences, Princeton University Press, Princeton. [Google Scholar]
  • Lecomte J.-C., Houel P., Daniel J-M., Vincké O. (2010) Modélisation géologique du Trias de l’Ouest du Bassin de Paris. Sélection préliminaire de zones d’injection et de stockage de CO2 pour le projet France-Nord, IFPEN, Report No. 61670. [Google Scholar]
  • Le Gallo Y., Trenty L., Michel A., Vidal-Gilbert S., Parra T., Jeannin L. (2006) Long-term flow simulation of CO2 storage in saline aquifers, in Proceedings of the 8th International Conference on Greenhouse Gas Control Technologies, 19-23 June, Trondheim, Norway. [Google Scholar]
  • Lohrenz J., Bray B., Clark C. (1964) Calculating viscosities of reservoir fluids from their compositions, J. Pet. Technol. 16, 1171–1176. [CrossRef] [Google Scholar]
  • Moutte J. (2009) Arxim, a library for thermodynamic modeling of fluid-rock systems, 55, (http://www.emse.fr/~moutte/arxim/). [Google Scholar]
  • Moutte J., Michel A., Battaia G., Parra T., Garcia D., Wolf S. (2010) Arxim, a library for thermodynamic modeling of reactive heterogeneous systems, with applications to the simulation of fluid-rock systems, 21st Congress of IUPAC, Conference on Chemical Thermodynamics, Tsukuba, Japan. [Google Scholar]
  • Newman G.H. (1973) Pore-volume compressibility of consolidated, friable, and unconsolidated reservoir rocks under hydrostatic loading, J. Pet. Technol. 25, 2, 129–134. [CrossRef] [Google Scholar]
  • Okuyama Y., Todaka N., Sasaki M., Ajima S., Akasaka C. (2013) Reactive transport simulation study of geochemical CO2 trapping on the Tokyo Bay model – With focus on the behavior of dawsonite, Appl. Geochem. 30, 57–66. [CrossRef] [Google Scholar]
  • Palandri J.L., Kharaka Y.K. (2004) A compilation of rate parameters of water-mineral interaction kinetics for application to geochemical modeling, U.S.G.S Open File Report 2004-1068, 64. [EDP Sciences] [Google Scholar]
  • Peng D.Y., Robinson D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59–64. [CrossRef] [Google Scholar]
  • Perrette L. (2011) Transposition of the CCS Directive in France, IEG Meeting, 14 November, Brussels, 22, Presentation. [Google Scholar]
  • Perrodon A., Zabek J. (1990) Paris Basin. Interior cratonic basins, AAPG Memoir n° 51, pp. 633–679. [Google Scholar]
  • Reid R.C., Prausnitz J.M., Poling B.E. (1987) The Properties of Gases and Liquids, 4th edn., McGraw-Hill, New York. [Google Scholar]
  • Schmidt E. (1969) Properties of water and steam in SI units, Springer Verlag, Berlin. [Google Scholar]
  • Serra O. (1985) Diagraphies différées. Bases de l’interprétation. Tome 2. Interprétation des données diagraphiques. Bulletin des centres de recherches exploration-production Elf Aquitaine. Memoire 7, ISSN 0181-0901. [Google Scholar]
  • Spötl C., Wright V.P. (1992) Groundwater dolocretes from the Upper Triassic of the Paris Basin, France: a case study of an arid, continental diagenetic facies, Sedimentology 39, 1119–1136. [CrossRef] [Google Scholar]
  • Soreide I., Whitson C.H. (1992) Peng-Robinson predictions for hydrocarbons, CO2, N2, and H2S with pure water and NaCl brine, Fluid Phase Equilib. 77, 217–240. [CrossRef] [Google Scholar]
  • Thomas L.K., Katz D.L., Tek M.R. (1968) Threshold pressure phenomena in porous media, SPE J 8, 174–184. [CrossRef] [Google Scholar]
  • Wertz F., Gherardi F., Blanc P., Bader A.-G., Fabbri A. (2012) Modelling CO2-driven cement alteration at well-caprock interface, Proceedings, Tough Symposium 2012 Lawrence Berkeley National Laboratory, 17-19 September, Berkeley, California. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.