- Acedo-Carrillo J.I., Rosas-Durazo A., Herrera-Urbina R., Rinaudo M., Goycoolea F.M., Valdez M.A. (2006) Zeta potential and drop growth of oil in water emulsions stabilized with mesquite gum, Carbohydrate Polym. 65, 3, 327–336. https://doi.org/10.1016/j.carbpol.2006.01.016. [CrossRef] [Google Scholar]
- Aggarwal A., Singh H., Kumar P., Singh M. (2008) Optimizing power consumption for CNC turned parts using response surface methodology and Taguchi’s technique – a comparative analysis, J. Mater. Process. Technol. 200, 1–3, 373–384. https://doi.org/10.1016/j.jmatprotec.2007.09.041. [CrossRef] [Google Scholar]
- Allen D.R. (1968) Physical changes of reservoir properties caused by subsidence and repressuring operations, J. Pet. Technol. 20, 01. https://doi.org/10.2118/1811-PA. [Google Scholar]
- Allouche J., Tyrode E., Sadtler V., Choplin L., Salager J.L. (2004) Simultaneous conductivity and viscosity measurements as a technique to track emulsion inversion by the phase-inversion-temperature method, Langmuir 20, 2134–2140. https://doi.org/10.1021/la035334r. [CrossRef] [PubMed] [Google Scholar]
- Al-Zahrani S.M., Al-Fariss T.F. (1998) A general model for the viscosity of waxy oils, Chem. Eng. Process 37, 5, 433–437. https://doi.org/10.1016/S0255-2701(98)00047-6. [Google Scholar]
- Amanullah Md., Al-Tahini A.M. (2009) Nano-technology-its significance in smart fluid development for oil and gas field application, in: SPE Saudi Arabia Section Technical Symposium, SPE 126102-MS, Society of Petroleum Engineers. https://doi.org/10.2118/126102-MS. [Google Scholar]
- Amirpour M., Shadizadeh S.R., Esfandyari H., Ahmadi S. (2015) Experimental investigation of wettability alteration on residual oil saturation using nonionic surfactants: Capillary pressure measurement, Petroleum 1, 289–299. https://doi.org/10.1016/j.petlm.2015.11.003. [CrossRef] [Google Scholar]
- Bezerra M.A., Santelli R.E., Oliveira E.P., Villar L.S., Escaleira L.A. (2008) Response Surface Methodology (RSM) as a tool for optimization in analytical chemistry, Talanta 76, 5, 965–977. https://doi.org/10.1016/j.talanta.2008.05.019. [CrossRef] [PubMed] [Google Scholar]
- Binks B.P. (1998) Emulsions-recent advances in understanding, in Modern aspects of emulsion science (Chapter 1), B.P. Binks (ed), Royal Society of Chemistry, Cambridge, UK. https://doi.org/10.1039/9781847551474-00001. [Google Scholar]
- Cheraghian G. (2015) An experimental study of surfactant polymer for enhanced heavy oil recovery using a glass micromodel by adding nanoclay, Pet. Sci. Technol. 33, 1410–1417. https://doi.org/10.1080/10916466.2015.1062780. [Google Scholar]
- Clifford P.J., Sorbie K.S. (1985) The effects of chemical degradation on polymer flooding, SPE-13586-MS, in: SPE Oilfield and Geothermal Chemistry Symposium, Society of Petroleum Engineers. https://doi.org/10.2118/13586-MS. [Google Scholar]
- Deng L., Que F., Wei H., Xu G., Dong X., Zhang H. (2015) Solubilization of tea seed oil in a food-grade water-dilutable microemulsion, PLoS One 10, 5, e0127291. https://doi.org/10.1371/journal.pone.0127291. [CrossRef] [PubMed] [Google Scholar]
- Dong H.Z., Fang S.F., Wang D.M., Wang J.Y., Liu Z., Hong B.H. (2008) Review of practical experience & management by polymer flooding at Daqing, in: SPE Symposium on Improved Oil Recovery, Tulsa, Oklahoma, USA, SPE 114342, Society of Petroleum Engineers, https://doi.org/10.2118/114342-MS. [Google Scholar]
- Egbogah E.O., Dawe R.A. (1981) Spontaneous emulsification aspect of enhanced oil recovery, in: 32nd Annual Technical Meeting, Calgary, Preprint, Petroleum Society of Canada.https://doi.org/10.2118/81-32-40. [Google Scholar]
- Farouq-Ali S.M. (1976) Non-thermal heavy oil recovery methods, in: SPE Rocky Mountain Regional Meeting, SPE 5893-MS, Society of Petroleum Engineers. https://doi.org/10.2118/5893-MS. [Google Scholar]
- Gäbler A., Wegener M., Paschedag A., Kraume M. (2006) The effect of pH on experimental and simulation results of transient drop size distributions in stirred liquid–liquid dispersions, Chem. Eng. Sci. 61, 3018–3024. https://doi.org/10.1016/j.ces.2005.10.072 [Google Scholar]
- Garti N., Slavin Y., Aserin A. (1999) Surface and emulsification properties of a new gum extracted from Portulaca oleracea L, Food Hydrocoll. 13, 2, 145–155. https://doi.org/10.1016/S0268-005X(98)00082-4. [Google Scholar]
- Golnabi H., Matloob M.R., Bahar M., Sharifian M. (2009) Investigation of electrical conductivity of different water liquids and electrolyte solutions, Iranian Phys. J. 3, 2, 24–28. https://www.sid.ir/en/journal/ViewPaper.aspx?ID=191551. [Google Scholar]
- Griffin W.C. (1949) Classification of Surface-Active Agents by “HLB”, J. Soc. Cosmet. Chem. 1, 5, 311–326. http://journal.scconline.org/contents/cc1949/cc001n05.html. [Google Scholar]
- Harnsilawat T., Pongsawatmanit R., McClements D.J. (2006) Influence of pH and ionic strength on formation and stability of emulsions containing oil droplets coated by â-Lactoglobulin-alginate Interfaces, Biomacromolecules 7, 2052–2058. https://doi.org/10.1021/bm050656q. [PubMed] [Google Scholar]
- Hibbert D.B. (2012) Experimental design in chromatography: a tutorial review, J, Chromatogr. B Anal. Technol. Biomed. Life Sci. 910, 2–13. https://doi.org/10.1016/j.jchromb.2012.01.020. [CrossRef] [Google Scholar]
- Huang X., Kakuda Y., Cui W. (2001) Hydrocolloids in emulsions: particle size distribution and interfacial activity, Food Hydrocoll. 15, 4–6, 533–542. https://doi.org/10.1016/S0268-005X(01)00091-1. [Google Scholar]
- Hunter R.J. (1986) Foundations of colloid science, Oxford University Press, Oxford, UK. [Google Scholar]
- Hunter R.J. (1998) Recent developments in the electroacoustic characterization of colloidal suspensions and emulsions, Colloids Surf. A Physicochem. Eng. Aspects 141, 1, 37–66. https://doi.org/10.1016/S0927-7757(98)00202-7. [CrossRef] [Google Scholar]
- Jafari S.M., Assadpoor E., He Y., Bhandari B. (2008) Re-coalescence of emulsion droplets during high-energy emulsification, Food Hydrocoll. 22, 7, 1191–1202. https://doi.org/10.1016/j.foodhyd.2007.09.006. [Google Scholar]
- Jarrahian K., Seiedi O., Sheykhan M., Sefti M.V., Ayatollahi S. (2012) Wettability alteration of carbonate rocks by surfactants: a mechanistic study, Colloids Surf. A 410, 1–10. https://doi.org/10.1016/j.colsurfa.2012.06.007. [CrossRef] [Google Scholar]
- Jiao J., Burgess D.J. (2003) Ostwald ripening of water-in-hydrocarbon emulsions, J. Colloid Interface Sci. 264, 2, 509–516. https://doi.org/10.1016/S0021-9797(03)00276-5. [Google Scholar]
- Jourdain L., Leser M.E., Schmitt C., Michel M., Dickinson E. (2008) Stability of emulsions containing sodium caseinate and dextran sulfate: Relationship to complexation in solution, Food Hydrocoll. 22, 647–659. https://doi.org/10.1016/j.foodhyd.2007.01.007. [Google Scholar]
- Kanan K., Al-Jabari M., Kayali I. (2017) Phase behavioral changes in SDS association structures induced by cationic hydrotropes, Arab. J. Chem. 10, S314–S320. https://doi.org/10.1016/j.arabjc.2012.08.003. [CrossRef] [Google Scholar]
- Kang H.S., Kwon S.S., Kim B.H., Lee B.R., Kang K.H., Hong J.E., Han S.H., Chang I.S. (2002) Nanoemulsion as a vitamin E acetate carrier to enhance infiltration into oral mucous membrane, J. Indus. Eng. Chem. 8, 348–353. https://www.cheric.org/research/tech/periodicals/view.php?seq=384318KW. [Google Scholar]
- Kao R.L., Wasan D.T., Nikolov A.D., Edwards D.A. (1988) Mechanisms of oil removal from a solid surface in presence of anionic micellar solutions, Colloids Surf. 34, 4, 389–398. https://doi.org/10.1016/0166-6622(88)80163-X. [CrossRef] [Google Scholar]
- Karnanda W., Benzagouta M.S., AlQuraishi A., Amro M.M. (2013) Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization, Arab. J. Geosci. 6, 9, 3535–3544. https://doi.org/10.1007/s12517-012-0605-7. [CrossRef] [Google Scholar]
- Karthikeyan S., Jeeva P.A., Jerobin J., Mukherjee A., Chandrasekaran N. (2012) Formulation and characterization of nanoemulsion coatings from Azadirachta indica, Int. J. ChemTech Res. 4, 4, 1566–1570. [Google Scholar]
- Khademi M., Wang W., Reitinger W., Barz D.P.J. (2017) Zeta potential of poly (methylmethacrylate) (PMMA) in contact with aqueous electrolyte-surfactant solutions, Langmuir 33, 40, 10473–10482. https://doi.org/10.1021/acs.langmuir.7b02487. [CrossRef] [PubMed] [Google Scholar]
- Kumar N., Gaur T., Mandal A. (2017) Characterization of SPN Pickering emulsions for application in enhanced oil recovery, J. Ind. Eng. Chem. 54, 304–315. https://doi.org/10.1016/j.jiec.2017.06.005. [Google Scholar]
- Kumar N., Mandal A. (2018a) Oil-in-water nanoemulsion stabilized by polymeric surfactant: Characterization and properties evaluation for enhanced oil recovery, European Polym. J. 109, 265–276. https://doi.org/10.1016/j.eurpolymj.2018.09.058. [CrossRef] [Google Scholar]
- Kumar N., Mandal A. (2018b) Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application, Energy Fuels 32, 6, 6452–6466. https://doi.org/10.1021/acs.energyfuels.8b00043. [Google Scholar]
- Kumar N., Mandal A. (2018c) Thermodynamic and physicochemical properties evaluation for formation and characterization of oil-in-water nanoemulsion, J. Mol. Liq. 266, 147–159. https://doi.org/10.1016/j.molliq.2018.06.069. [Google Scholar]
- Kumar N., Mandal A. (2020) Wettability alteration of sandstone rock by surfactant stabilized nanoemulsion for enhanced oil recovery – A mechanistic study, Colloids Surf. A 601, 125043. https://doi.org/10.1016/j.colsurfa.2020.125043. [CrossRef] [Google Scholar]
- Lee K.S. (2011) Performance of a polymer flood with shear-thinning fluid in heterogeneous layered systems with cross-flow, Energies 4, 8, 1112–1128. https://doi.org/10.3390/en4081112. [Google Scholar]
- Leong T.S.H., Wooster T.J., Kentish S.E., Ashokkumar M. (2009) Minimising oil droplet size using ultrasonic emulsification, Ultrason. Sonochem. 16, 721–727. https://doi.org/10.1016/j.ultsonch.2009.02.008. [CrossRef] [PubMed] [Google Scholar]
- Mandal A., Bera A., Ojha K., Kumar T. (2012) Characterization of surfactant stabilized nanoemulsion and its use in enhanced oil recovery, Soc. Pet. Eng. 6, 537–542. https://doi.org/10.2118/155406-MS. [Google Scholar]
- Martins M.A., Neves C.M., Kurnia K.A., Carvalho P.J., Rocha M.A., Santos L.M., Freire M.G. (2016) Densities, viscosities and derived thermos-physical properties of water saturated imidazolium-based ionic liquids, Fluid Phase Equilib 407, 188–196. https://doi.org/10.1016/j.fluid.2015.05.023. [CrossRef] [PubMed] [Google Scholar]
- Mason R.L., Gunst R.F., Hess J.J. (2003) Statistical design and analysis of experiments with applications to engineering and science, John Wiley and Sons Inc., An International Thomason Publishing, Europe, London, 1V7AA, Hoboken, NJ. [Google Scholar]
- McClements D.J. (2004) Protein-stabilized emulsions, Curr. Opin. Colloid Interface Sci. 95, 305–313. https://doi.org/10.1016/j.cocis.2004.09.003. [Google Scholar]
- Montgomery D.C. (2013) Design and analysis of experiments, 8th edn., John Wiley & Sons Inc, Hoboken, NJ. https://lccn.loc.gov/2017002355. [Google Scholar]
- Moreira de Morais J., Henrique dos Santos O.D., Delicato T., Azzini Goncalves R., Alves da Rocha-Filho P. (2006) Physicochemical characterization of canola oil/water nano-emulsions obtained by determination of required HLB number and emulsion phase inversion methods, J. Dispersion Sci. Technol. 27, 1, 109–115. https://doi.org/10.1081/DIS-200066829. [CrossRef] [Google Scholar]
- Ohshima H., Makino K. (2014) Colloid and interface science in pharmaceutical research and development, Elsevier. [Google Scholar]
- Pal N., Kumar N., Verma A., Ojha K., Mandal A. (2018) Performance evaluation of novel sunflower oil-based gemini surfactant(s) with different spacer lengths: application in enhanced oil recovery, Energy Fuels 32, 11344–11361. https://doi.org/10.1021/acs.energyfuels.8b02744. [Google Scholar]
- Pal N., Kumar N., Mandal A. (2019a) Stabilization of dispersed oil droplets in nanoemulsions by synergistic effects of the gemini surfactant, PHPA polymer, and silica nanoparticle, Langmuir 35, 7, 2655–2667. https://doi.org/10.1021/acs.langmuir.8b03364. [Google Scholar]
- Pal N., Kumar N., Saw R.K., Mandal A. (2019b) Gemini surfactant/polymer/silica stabilized oil-in-water nanoemulsions: Design and physicochemical characterization for enhanced oil recovery, J. Pet. Sci. Eng. 183, 106464. https://doi.org/10.1016/j.petrol.2019.106464. [Google Scholar]
- Park J., Lee S., Lee J.W. (2018) Effect of pH and concentrated salt on the droplet size and mass transfer coefficient in a stirred liquid-liquid reactor, Ind. Eng. Chem. Res. 57, 6, 2310–2321. https://doi.org/10.1021/acs.iecr.7b04793. [Google Scholar]
- Pei H., Zhang G., Ge J., Tang M., Zheng Y. (2012) Comparative effectiveness of alkaline flooding and alkaline-surfactant flooding for improved heavy-oil recovery, Energy Fuels 26, 5, 2911–2919. https://doi.org/10.1021/ef300206u. [Google Scholar]
- Predota M., Machesky M.L., Wesolowski D.J. (2016) Molecular origins of the zeta potential, Langmuir 32, 40, 10189–10198. https://doi.org/10.1021/acs.langmuir.6b02493. [CrossRef] [PubMed] [Google Scholar]
- Sakthivel S., Velusamy S., Gardas R.L., Sangwai J.S. (2015) Adsorption of aliphatic ionic liquids at low waxy crude oil-water interfaces and the effect of brine, Colloids Surf. A 468, 62–75. https://doi.org/10.1016/j.colsurfa.2014.12.010. [CrossRef] [Google Scholar]
- Sari A., Chen Y., Xie Q., Saeedi A. (2019) Low salinity water flooding in high acidic oil reservoirs: Impact of pH on wettability of carbonate reservoirs, J. Mol. Liq. 281, 444–450. https://doi.org/10.1016/j.molliq.2019.02.081. [Google Scholar]
- See C.H., Saphanuchart W., Looi M.H., Loke Y.S. (2011) Crude oil recovery from sludge treated by nanoemulsion composition, SPE-145935-MS, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, Society of Petroleum Engineers. https://doi.org/10.2118/145935-MS. [Google Scholar]
- Shafiq M.U., Chong Y.J., Mahmud H.K.B., Hossain M.M., Rezaee R., Testamanti N. (2018) Application of emulsified acids on sandstone formation at elevated temperature conditions: an experimental study, J. Pet. Explor. Prod. Technol. 9, 1323–1329. https://doi.org/10.1007/s13202-018-0567-8. [Google Scholar]
- Shramm L.L. (2000) Surfactants: Fundamentals and applications in the petroleum industry, 1st edn., Cambridge University Press, New York. [CrossRef] [Google Scholar]
- Standnes D.C., Austad T. (2000) Wettability alteration in chalk: 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactants, J. Pet. Sci. Eng. 28, 123–143. [Google Scholar]
- Terry R.E., Rogers J.B. (2014) Applied Petroleum Reservoir Engineering, third edition, Pearson Education, 528 p. [Google Scholar]
- Tiab D., Donaldson E.C. (2004) Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 2nd edn., Elsevier, New York, USA, pp. 313–414. [Google Scholar]
- Xia H., Wang D., Wang G., Ma W., Deng H.W., Liu J. (2008) Mechanism of the effect of micro-forces on residual oil in chemical flooding, in: SPE Symposium on Improved Oil Recovery, 20-23 April, Tulsa, Oklahoma, USA, Society of Petroleum Engineers. https://doi.org/10.2118/114335-MS. [Google Scholar]
- Xu H., Liu Y., Zhang L. (2015) Salting-out and salting-in: competitive effects of salt on the aggregation behavior of soy protein particles and their emulsifying properties, Soft Matter 11, 5926–5932. https://doi.org/10.1039/C5SM00954E. [CrossRef] [PubMed] [Google Scholar]
- Yuan C.D., Pu W.F., Wang X.C., Sun L., Zhang Y.C., Cheng S. (2015) Effects of interfacial tension, emulsification, and surfactant concentration on oil recovery in surfactant flooding process for high temperature and high salinity reservoirs, Energy Fuels 29, 6165–6176. https://doi.org/10.1021/acs.energyfuels.5b01393. [Google Scholar]
- Zhang Z., Li J., Zhou J. (2011) Microscopic roles of “Viscoelasticity” in HPMA polymer flooding for EOR, Transp. Porous Media 86, 199–214. https://doi.org/10.1007/s11242-010-9616-6. [Google Scholar]
Open Access
Issue |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
|
|
---|---|---|
Article Number | 72 | |
Number of page(s) | 21 | |
DOI | https://doi.org/10.2516/ogst/2020066 | |
Published online | 19 October 2020 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.