Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 75, 2020
Article Number 73
Number of page(s) 10
DOI https://doi.org/10.2516/ogst/2020069
Published online 20 October 2020
  • Saidi A.M. (1983) Simulation of naturally fractured reservoirs, in: SPE Reservoir Simulation Symposium, 15–18 November, San Francisco, California, Society of Petroleum Engineers. [Google Scholar]
  • Fernø M.A. (2012) Enhanced oil recovery in fractured reservoirs, in Introduction to Enhanced Oil Recovery (EOR) Processes and Bioremediation of Oil-Contaminated Sites, IntechOpen, New York. [Google Scholar]
  • Allan J., Sun S.Q. (2003) Controls on recovery factor in fractured reservoirs: lessons learned from 100 fractured fields, in SPE Annual Technical Conference and Exhibition, 5–8 October, Denver, Colorado, Society of Petroleum Engineers. [Google Scholar]
  • Saidi A.M., Tehrani D.H., Wit K. (1979) PD 10 (3) mathematical simulation of fractured reservoir performance, based on physical model experiments, in: 10th World Petroleum Congress, 9–14 September, Bucharest, Romania, World Petroleum Congress. [Google Scholar]
  • van Golf-Racht T.D. (1982) Fundamentals of fractured reservoir engineering, Vol. 12, Elsevier. [Google Scholar]
  • Uleberg K., Høier L. (2002) Miscible gas injection in fractured reservoirs, in: SPE/DOE Improved Oil Recovery Symposium, 13–17 April, Tulsa, Oklahoma, Society of Petroleum Engineers. [Google Scholar]
  • El-Banbi A.H., Aly A.M., Lee W.J., McCain Jr. W.D. (2000) Investigation of waterflooding and gas cycling for developing a gas-condensate reservoir, in: SPE/CERI Gas Technology Symposium, 3–5 April, Calgary, Alberta, Canada, Society of Petroleum Engineers. [Google Scholar]
  • Abbaszadeh M., Rodriguez De-La Garza F., Villavicencio AE (2016) Methodology of foam-surfactant EOR for pilot design studies in naturally fractured reservoirs, in: SPE EOR Conference at Oil and Gas West Asia, 21–23 March, Muscat, Oman, Society of Petroleum Engineers. [Google Scholar]
  • Badizad M.H., Zanganeh A.R., Dehaghani A.H., Dehaghani S. (2016) Simulation and assessment of surfactant injection in fractured reservoirs: a sensitivity analysis of some uncertain parameters, Iranian J. Oil Gas Sci. Technol. 5, 1, 13–26. [Google Scholar]
  • Bourbiaux B., Fourno A., Nguyen Q.-L., Norrant F., Robin M., Rosenberg E., Argillier J.-F. (2016) Experimental and numerical assessment of chemical enhanced oil recovery in oil-wet naturally fractured reservoirs, SPE J. 21, 03, 706–719. [CrossRef] [Google Scholar]
  • Mohammed M.N., Hossain M.E. (2016) A numerical investigation on the performance of alkaline-surfactant-polymer flooding in naturally fractured carbonate reservoirs, in: SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, 25–28 April, Dammam, Saudi Arabia, Society of Petroleum Engineers. [Google Scholar]
  • Najafabadi N.F., Delshad M., Sepehrnoori K., Nguyen Q.P., Zhang J. (2008) Chemical flooding of fractured carbonates using wettability modifiers, in: SPE Symposium on Improved Oil Recovery, 20–23 April, Tulsa, Oklahoma, Society of Petroleum Engineers. [Google Scholar]
  • Parra J.E., Pope G.A., Mejia M., Balhoff M.T. (2016) New approach for using surfactants to enhance oil recovery from naturally fractured oil-wet carbonate reservoirs, in: SPE Annual Technical Conference and Exhibition, 26–28 September, Dubai, UAE, Society of Petroleum Engineers. [Google Scholar]
  • Saki M., Khaz’ali A.R. (2017) Influence of surfactant type, surfactant concentration, and salinity on interfacial tension of a brine/live oil/surfactant fluid system: A case study of Iranian Asmari Oil Reservoir, Iranian J. Oil Gas Sci. Technol. 6, 1, 1–16. [Google Scholar]
  • Sepehri M., Moradi B., Emamzadeh A., Mohammadi A.H. (2019) Experimental study and numerical modeling for enhancing oil recovery from carbonate reservoirs by nanoparticle flooding, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 74, 5. [Google Scholar]
  • Zaeri M.R., Hashemi R., Shahverdi H., Sadeghi M. (2018) Enhanced oil recovery from carbonate reservoirs by spontaneous imbibition of low salinity water, Pet. Sci. 15, 3, 564–576. [Google Scholar]
  • Mayer E.H., Berg R.L., Carmichael J.D., Weinbrandt R.M. (1983) Alkaline injection for enhanced oil recovery – A status report, J. Pet. Technol. 35, 01, 209–221. [CrossRef] [Google Scholar]
  • Sayed Akram N.I., Mamora D. (2011) SPE/DGS Saudi Arabia Section Technical Symposium and Exhibition, in: Simulation study on surfactant-polymer flood performance in fractured carbonate reservoir, 15–18 May, Al-Khobar, Saudi Arabia, Society of Petroleum Engineers. [Google Scholar]
  • Derkani M., Fletcher A., Abdallah W., Sauerer B., Anderson J., Zhang Z. (2018) Low salinity waterflooding in carbonate reservoirs: Review of interfacial mechanisms, Colloids Interf. 2, 2, 20. [CrossRef] [Google Scholar]
  • Gao C.H., Zekri A. (2011) Applications of microbial-enhanced oil recovery technology in the past decade, Energy Sources, Part A 33, 10, 972–989. [CrossRef] [Google Scholar]
  • Wang Y., Xu H., Yu W., Bai B., Song X., Zhang J. (2011) Surfactant induced reservoir wettability alteration: Recent theoretical and experimental advances in enhanced oil recovery, Pet. Sci. 8, 4, 463–476. [Google Scholar]
  • Sheng J.J. (2013) Comparison of the effects of wettability alteration and IFT reduction on oil recovery in carbonate reservoirs, Asia-Pacific J. Chem. Eng. 8, 1, 154–161. [CrossRef] [Google Scholar]
  • Landa-Marbán D., Radu F.A., Nordbotten J.M. (2017) Modeling and simulation of microbial enhanced oil recovery including interfacial area, Transp. Porous Med. 120, 2, 395–413. [CrossRef] [Google Scholar]
  • Bailey S.A., Kenney T.M., Schneider D.R. (2001) Microbial enhanced oil recovery: diverse successful applications of biotechnology in the oil field, in: SPE Asia Pacific Improved Oil Recovery Conference, 6–9 October, Kuala Lumpur, Malaysia, Society of Petroleum Engineers. [Google Scholar]
  • Afrapoli M.S., Crescente C., Alipour S., Torsaeter O. (2009) The effect of bacterial solution on the wettability index and residual oil saturation in sandstone, J. Pet. Sci. Eng. 69, 3–4, 255–260. [Google Scholar]
  • Zekri A.Y., Ghannam M.T., Almehaideb R.A. (2003) Carbonate rocks wettability changes induced by microbial solution, in: SPE Asia Pacific Oil and Gas Conference and Exhibition, 9–11 September, Jakarta, Indonesia, Society of Petroleum Engineers. [Google Scholar]
  • Armstrong R.T., Wildenschild D. (2012) Investigating the pore-scale mechanisms of microbial enhanced oil recovery, J. Pet. Sci. Eng. 94, 155–164. [Google Scholar]
  • Armstrong R.T., Wildenschild D. (2012) Microbial enhanced oil recovery in fractional-wet systems: A pore-scale investigation, Transp. Porous Med. 92, 3, 819–835. [CrossRef] [Google Scholar]
  • Brown L.R., Vadie A.A., Stephens J.O. (2000) Slowing production decline and extending the economic life of an oil field: new MEOR technology, in SPE/DOE Improved Oil Recovery Symposium, 3–5 April, Tulsa, Oklahoma, Society of Petroleum Engineers. [Google Scholar]
  • Jiecheng C., Wei L., Jingyuan Z., Junzheng W., Zhenyu Y., Cuiling G. (2007) Studies on the Pilot Test with microbial profile modification after polymer flooding in Daqing Oilfield, in: IPTC 2007: International Petroleum Technology Conference, 7–8 May, Dhahran, Saudi Arabia. https://doi.org/10.3997/2214-4609-pdb.147.iptc11227. [Google Scholar]
  • Jinfeng L., Lijun M., Bozhong M., Rulin L., Fangtian N., Jiaxi Z. (2005) The field pilot of microbial enhanced oil recovery in a high temperature petroleum reservoir, J. Pet. Sci. Eng. 48, 3–4, 265–271. [Google Scholar]
  • Kowalewski E., Rueslatten I., Boassen T., Sunde E., Stensen J.A., Lillebo B.-L., Gunhild B., Torsvik T. (2005) Analyzing microbial improved oil recovery processes from core floods, in: International Petroleum Technology Conference, 21–23 November, Doha, Qatar, International Petroleum Technology Conference. [Google Scholar]
  • Karim M.G., Hj Salim M.A., Md. Zain Z., Talib N.N. (2001) Microbial Enhanced Oil Recovery (MEOR) technology in Bokor Field, Sarawak, in: SPE Asia Pacific Improved Oil Recovery Conference, 6–9 October, Kuala Lumpur, Malaysia, Society of Petroleum Engineers. [Google Scholar]
  • Sen R. (2008) Biotechnology in petroleum recovery: the microbial EOR, Prog. Energy combust. Sci. 34, 6, 714–724. [Google Scholar]
  • Al-Hattali R.R., Al-Sulaimani H.S., Al-Wahaibi Y.M., Al-Bahry S., Elshafie A., Al-Bemani A.S., Joshi S. (2012) Improving sweep efficiency in fractured carbonate reservoirs by microbial biomass, in: SPE EOR Conference at Oil and Gas West Asia, 16–18 April, Muscat, Oman, Society of Petroleum Engineers. [Google Scholar]
  • Biria D., Roostaazad R., Darouneh E., Izadi H. (2007) Analysis of MEOR efficiency to increase recovery in an Iranian reservoir, Scientia Iranica 14, 2, 161–168. [Google Scholar]
  • Nourani M., Panahi H., Mohebbi A., Haghighi M., Roostaazad R., Biria D. (2007) Laboratory studies of MEOR in the micromodel as a fractured system, in: Eastern Regional Meeting, 17–19 October, Lexington, Kentucky, Society of Petroleum Engineers. [Google Scholar]
  • Salehizadeh H., Mohammadizad S. (2009) Microbial enhanced oil recovery using biosurfactant produced by Alcaligenes faecalis, Iranian J. Biotechnol. 7, 4, 216–223. [Google Scholar]
  • Soudmand-Asli A., Ayatollahi S.S., Mohabatkar H., Zareie M., Shariatpanahi S.F. (2007) The in situ microbial enhanced oil recovery in fractured porous media, J. Pet. Sci. Eng. 58, 1–2, 161–172. [Google Scholar]
  • Zekri A.Y., Almehaideb R. (2003) Microbial and waterflooding of fractured carbonate rocks: An experimental approach, Pet. Sci. Technol. 21, 1–2, 315–331. [Google Scholar]
  • Xiao M., Zhang Z.-Z., Wang J.-X., Zhang G.-Q., Luo Y.-J., Song Z.-Z., Zhang J.-Y. (2013) Bacterial community diversity in a low-permeability oil reservoir and its potential for enhancing oil recovery, Bioresour. Technol. 147, 110–116. [Google Scholar]
  • Kazemi H. (1969) Pressure transient analysis of naturally fractured reservoirs with uniform fracture distribution, SPE J. 9, 04, 451–462. [Google Scholar]
  • Warren J.E., Root P.J. (1963) The behavior of naturally fractured reservoirs, SPE J. 3, 03, 245–255. [Google Scholar]
  • Lanning L.M., Ford R.M. (2002) Glass micromodel study of bacterial dispersion in spatially periodic porous networks, Biotechnol. Bioeng. 78, 5, 556–566. [CrossRef] [PubMed] [Google Scholar]
  • Fan Y.Q., Gao K., Chen J., Li W.G., Zhang Y. (2018) Low-cost PMMA-based microfluidics for the visualization of enhanced oil recovery, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 73, 26. [CrossRef] [Google Scholar]
  • Tsakiroglou C.D., Avraam D.G. (2002) Fabrication of a new class of porous media models for visualization studies of multiphase flow processes, J. Mater. Sci. 37, 2, 353–363. [Google Scholar]
  • Robin M. (2001) Interfacial phenomena: reservoir wettability in oil recovery, Oil Gas Sci. Technol. - Rev. IFP Energies nouvelles 56, 1, 55–62. [CrossRef] [Google Scholar]
  • Didari M., Amoozegar M.A., Bagheri M., Mehrshad M., Schumann P., Spröer C., Sanchez-Porro C., Ventosa A. (2013) Bacillus persicus sp. nov., a halophilic bacterium from a hypersaline lake, Int. J. Syst. Evol. Microbiol. 63, 1229–1234. [CrossRef] [PubMed] [Google Scholar]
  • Mukerjee P., Mysels K.J. (1971) Critical micelle concentrations of aqueous surfactant systems, National Standard reference data system. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.