Regular Article
Design and formulation of surfactant stabilized O/W emulsion for application in enhanced oil recovery: effect of pH, salinity and temperature
Department of Petroleum Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad 826 004, India
* Corresponding author: ajay@iitism.ac.in
Received:
8
April
2020
Accepted:
28
August
2020
Mobilization of crude oil from the subsurface porous media by emulsion injection is one of the Chemical Enhanced Oil Recovery (C-EOR) techniques. However, deterioration of emulsion by phase separation under harsh reservoir conditions like high salinity, acidic or alkaline nature and high temperature pose a challenge for the emulsion to be a successful EOR agent. Present study aims at formulation of Oil-in-Water (O/W) emulsion stabilized by Sodium Dodecyl Sulfate (SDS) using the optimum values of independent variables – salinity, pH and temperature. The influence of above parameters on the physiochemical properties of the emulsion such as average droplet size, zeta (ζ) potential, conductivity and rheological properties were investigated to optimize the properties. The influence of complex interactions of independent variables on emulsion characteristics were premeditated by experimental model obtained by Taguchi Orthogonal Array (TOA) method. Accuracy and significance of the experimental model was verified using Analysis Of Variance (ANOVA). Results indicated that the experimental models were significantly (p < 0.05) fitted with main influence of salinity (making it a critical variable) followed by its interactions with pH and temperature for all the responses studied for the emulsion properties. No significant difference between the predicted and experimental response values of emulsion ensured the adequacy of the experimental model. Formulated optimized emulsion manifested good stability with 2417.73 nm droplet size, −72.52 mV ζ-potential and a stable rheological (viscosity and viscoelastic) behavior at extensive temperature range. Ultralow Interfacial Tension (IFT) value of 2.22E-05 mN/m was obtained at the interface of crude oil and the emulsion. A favorable wettability alteration of rock from intermediate-wet to water-wet was revealed by contact angle measurement and an enhanced emulsification behavior with crude oil by miscibility test. A tertiary recovery of 21.03% of Original Oil In Place (OOIP) was obtained on sandstone core by optimized emulsion injection. Therefore, performance assessment of optimized emulsion under reservoir conditions confirms its capability as an effective oil-displacing agent.
© N. Kumar et al., published by IFP Energies nouvelles, 2020
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.