Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 6, November–December 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 36
Number of page(s) 22
Published online 05 December 2017
  • Fansler T.D., Wagner R.M. (2015) Cyclic dispersion in engine combustion-introduction by the special issue editors, Int. J. Engine Res. 16, 255–259 [CrossRef]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., An-gelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115–3122 [CrossRef]
  • Moureau V., Barton I., Angelberger C., Poinsot T. (2004) Towards large eddy simulation in internal-combustion engines: simulation of a compressed tumble flow, in: SAE Technical Paper, SAE International, 06
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390 [CrossRef]
  • Janas P., Wlokas I., Bohm B., Kempf A. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 1, 237–264 [CrossRef]
  • Nguyen T.M., Proch F., Wlokas I., Kempf A.M. (2016) Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique, Flow Turbul. Combust. 97, 1, 191–230 [CrossRef]
  • Mittal V., Kang S., Doran E., Cook D., Pitsch H. (2014) LES of gas exchange in IC engines, Oil Gas Sci. Technol.: Rev. d'lFP Energies nouvelles 69, 1, 29–40 [CrossRef] [EDP Sciences]
  • Verzicco R., Mohd-Yusof J., Orlandi P., Haworth D. (2000) Large eddy simulation in complex geometric configurations using boundary body forces, AIAA J. 38, 3, 427–433 [CrossRef]
  • Mittal R., Iaccarino G. (2005) Immersed boundary methods, Ann. Rev. Fluid Mech. 37, 1, 239–261 [NASA ADS] [CrossRef]
  • Meakin R.L. (1998) Composite overset structured grids, in: Handbook of Grid Generation, CRC Press, December 1998
  • Berger M.J., Oliger J. (1984) Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53, 3, 484–512 [NASA ADS] [CrossRef] [MathSciNet]
  • Gaitonde D., Shang J., Young J. (1997) Practical aspects of high-order accurate finite-volume schemes for electromagnetics, in: AIAA Paper 97-0363
  • Gaitonde D.V., Visbal M.R. (2000) Pade-type higher-order boundary filters for the Navier-Stokes equations, AIAA J. 38, 2103–2112 [CrossRef]
  • Kang S., Iaccarino G., Ham F., Moin P. (2009) Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method, J. Comput. Phys. 228, 18, 6753–6772 [CrossRef]
  • Desjardins O., Blanquart G., Balarac G., Pitsch H. (2008) High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys. 227, 15, 7125–7159 [CrossRef] [MathSciNet]
  • Liu X.-D., Osher S., Chan T. (1994) Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115, 1, 200–212 [NASA ADS] [CrossRef] [MathSciNet]
  • Trisjono P., Kang S., Pitsch H. (2016) On a consistent high-order finite difference scheme with kinetic energy conservation for simulating turbulent reacting flows, J. Comput. Phys. 327, 612–628 [CrossRef]
  • Poinsot T., Garcia M., Senoner J.M., Gicquel L., Staffel-bach G., Vermorel O. (2011) Numerical and physical instabilities in massively parallel les of reacting flows, J. Sci. Comput. 49, 1, 78–93 [CrossRef]
  • Yee H.C., Sjogreen B. (2002) Designing adaptive low-dissipative high order schemes for long-time integrations, Springer, The Netherlands, Dordrecht, pp. 141–198
  • Hu F., Hussaini M., Manthey J. (1996) Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys. 124, 1, 177–191 [NASA ADS] [CrossRef]
  • Stanescu D., Habashi W. (1998) 2n-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys. 143, 2, 674–681 [CrossRef]
  • Waheed A., Yan J. (1998) Workload characterization of CFD applications using partial differential equation solvers, Technical report, Nasa Ames Research Center, Technical Report NAS-98-011
  • Fadlun E., Verzicco R., Orlandi P., Mohd-Yusof J. (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161, 1, 35–60 [NASA ADS] [CrossRef]
  • Kim J., Kim D., Choi H. (2001) An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171, 1, 132–150 [CrossRef]
  • Fedkiw R.P., Marquina A., Merriman B. (1999) An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys. 148, 2, 545–578 [CrossRef]
  • Meakin R. (2001) Object X-rays for cutting holes in composite overset structured grids, in: Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, June 2001
  • Noack, R. (2016) On overset hole cutting and the problems encountered, in: 13th Symposium on Overset Composite Grids And Solution Technology, Mukilteo, WA, USA
  • Bonet J., Peraire J. (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, Int. J. Numer. Methods Eng. 31, 1, 1–17 [CrossRef]
  • Chesshire, G., Henshaw W. (1990) Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys. 90, 1, 1–64 [CrossRef] [MathSciNet]
  • Lodato G., Domingo P., Vervisch L. (2008) Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys. 227, 10, 5105–5143 [CrossRef]
  • Roman F., Armenio V., Frohlich J. (2009) A simple wall-layer model for large eddy simulation with immersed boundary method, Phys. of Fluids 21, 10, 101701 [CrossRef]
  • Lee J., Cho M., Choi H. (2013) Large eddy simulations of turbulent channel and boundary layer flows at high Reynolds number with mean wall shear stress boundary condition, Phys. Fluids 25, 11, 110808 [CrossRef]
  • Yang X.I.A., Sadique J., Mittal R., Meneveau C. (2015) Integral wall model for large eddy simulations of wall-bounded turbulent flows, Phys. Fluids 27, 2, 025112 [CrossRef]
  • Hoyas S., Jimenez J. (2006) Scaling of the velocity fluctuations in turbulent channels up to ReT = 2003, Phys. Fluids 18, 1, 011702 [CrossRef]
  • Meneveau C., Lund T.S., Cabot W.H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech. 319, 353–385 [CrossRef]
  • Silvis M.H., Remmerswaal R.A., Verstappen R. (2017) Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows, Phys. Fluids 29, 1, 015105 [CrossRef]
  • Kobayashi H. (2005) The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow, Phys. Fluids 17, 4, 045104 [CrossRef]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations, Monthly Weather Rev. 91, 3, 99–164 [NASA ADS] [CrossRef]
  • Kobayashi H. (2006) Large eddy simulation of magnetohydrodynamic turbulent channel flows with local subgrid-scale model based on coherent structures, Phys. Fluids 18, 4, 045107 [CrossRef]
  • Tanahashi M., Miyauchi T. (1995) Small scale eddies in turbulent mixing layer, in: Proceedings of the Tenth Symposium on Turbulent Shear Flows, Vol. 1, pp. 79–84
  • Balarac G., Pitsch H., Raman V. (2008) Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids 20, 035114 [CrossRef]
  • Yee H., Sandham N., Djomehri M. (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 1, 199–238 [CrossRef] [MathSciNet]
  • Shih T. (2002) Overset grids: Fundamental and practical issues, in Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, June 2002
  • Laimboeck F.J., Glanz R., Modre E., Rothbauer R.J. (1999) AVL approach for small 4-stroke cylinderhead-, port- and combustion chamber layout, in: SAE Technical Paper, SAE International, 09
  • Hager W.H. (2010) Wastewater Hydraulics, Springer-Verlag, Berlin, Heidelberg [CrossRef]
  • Graftieaux L., Michard M., Grosjean N. (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows, Meas. Sci. Technol. 12, 9, 1422
  • J. Heywood, Internal Combustion Engine Fundamentals. Automotive technology series, McGraw-Hill, 1988
  • Lumley J.L. (1967) The structure of inhomogeneous turbulent flows, in: Yaglom A.M., Tatarski V.I. (eds.), Atmospheric turbulence and radio propagation, Nauka, Moscow, pp. 166–178
  • Falkenstein T., Bode M., Kang S., Pitsch H., Arima T., Taniguchi, H. (2015) Large-eddy simulation study on unsteady effects in a statistically stationary SI engine port flow, in: SAE Technical Paper, SAE International, 04

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.