Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Numéro 6, November–December 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Numéro d'article 36
Nombre de pages 22
Publié en ligne 5 décembre 2017
  • Fansler T.D., Wagner R.M. (2015) Cyclic dispersion in engine combustion-introduction by the special issue editors, Int. J. Engine Res. 16, 255–259 [CrossRef] [Google Scholar]
  • Enaux B., Granet V., Vermorel O., Lacour C., Pera C., An-gelberger C., Poinsot T. (2011) LES study of cycle-to-cycle variations in a spark ignition engine, Proc. Combust. Inst. 33, 2, 3115–3122 [Google Scholar]
  • Moureau V., Barton I., Angelberger C., Poinsot T. (2004) Towards large eddy simulation in internal-combustion engines: simulation of a compressed tumble flow, in: SAE Technical Paper, SAE International, 06 [Google Scholar]
  • Truffin K., Angelberger C., Richard S., Pera C. (2015) Using large-eddy simulation and multivariate analysis to understand the sources of combustion cyclic variability in a spark-ignition engine, Combust. Flame 162, 12, 4371–4390 [CrossRef] [Google Scholar]
  • Janas P., Wlokas I., Bohm B., Kempf A. (2017) On the evolution of the flow field in a spark ignition engine, Flow Turbul. Combust. 98, 1, 237–264 [Google Scholar]
  • Nguyen T.M., Proch F., Wlokas I., Kempf A.M. (2016) Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique, Flow Turbul. Combust. 97, 1, 191–230 [CrossRef] [Google Scholar]
  • Mittal V., Kang S., Doran E., Cook D., Pitsch H. (2014) LES of gas exchange in IC engines, Oil Gas Sci. Technol.: Rev. d'lFP Energies nouvelles 69, 1, 29–40 [CrossRef] [EDP Sciences] [Google Scholar]
  • Verzicco R., Mohd-Yusof J., Orlandi P., Haworth D. (2000) Large eddy simulation in complex geometric configurations using boundary body forces, AIAA J. 38, 3, 427–433 [CrossRef] [Google Scholar]
  • Mittal R., Iaccarino G. (2005) Immersed boundary methods, Ann. Rev. Fluid Mech. 37, 1, 239–261 [NASA ADS] [CrossRef] [Google Scholar]
  • Meakin R.L. (1998) Composite overset structured grids, in: Handbook of Grid Generation, CRC Press, December 1998 [Google Scholar]
  • Berger M.J., Oliger J. (1984) Adaptive mesh refinement for hyperbolic partial differential equations, J. Comput. Phys. 53, 3, 484–512 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Gaitonde D., Shang J., Young J. (1997) Practical aspects of high-order accurate finite-volume schemes for electromagnetics, in: AIAA Paper 97-0363 [Google Scholar]
  • Gaitonde D.V., Visbal M.R. (2000) Pade-type higher-order boundary filters for the Navier-Stokes equations, AIAA J. 38, 2103–2112 [CrossRef] [Google Scholar]
  • Kang S., Iaccarino G., Ham F., Moin P. (2009) Prediction of wall-pressure fluctuation in turbulent flows with an immersed boundary method, J. Comput. Phys. 228, 18, 6753–6772 [CrossRef] [Google Scholar]
  • Desjardins O., Blanquart G., Balarac G., Pitsch H. (2008) High order conservative finite difference scheme for variable density low mach number turbulent flows, J. Comput. Phys. 227, 15, 7125–7159 [CrossRef] [MathSciNet] [Google Scholar]
  • Liu X.-D., Osher S., Chan T. (1994) Weighted essentially non-oscillatory schemes, J. Comput. Phys. 115, 1, 200–212 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Trisjono P., Kang S., Pitsch H. (2016) On a consistent high-order finite difference scheme with kinetic energy conservation for simulating turbulent reacting flows, J. Comput. Phys. 327, 612–628 [CrossRef] [Google Scholar]
  • Poinsot T., Garcia M., Senoner J.M., Gicquel L., Staffel-bach G., Vermorel O. (2011) Numerical and physical instabilities in massively parallel les of reacting flows, J. Sci. Comput. 49, 1, 78–93 [CrossRef] [Google Scholar]
  • Yee H.C., Sjogreen B. (2002) Designing adaptive low-dissipative high order schemes for long-time integrations, Springer, The Netherlands, Dordrecht, pp. 141–198 [Google Scholar]
  • Hu F., Hussaini M., Manthey J. (1996) Low-dissipation and low-dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys. 124, 1, 177–191 [NASA ADS] [CrossRef] [Google Scholar]
  • Stanescu D., Habashi W. (1998) 2n-storage low dissipation and dispersion Runge-Kutta schemes for computational acoustics, J. Comput. Phys. 143, 2, 674–681 [CrossRef] [Google Scholar]
  • Waheed A., Yan J. (1998) Workload characterization of CFD applications using partial differential equation solvers, Technical report, Nasa Ames Research Center, Technical Report NAS-98-011 [Google Scholar]
  • Fadlun E., Verzicco R., Orlandi P., Mohd-Yusof J. (2000) Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys. 161, 1, 35–60 [NASA ADS] [CrossRef] [Google Scholar]
  • Kim J., Kim D., Choi H. (2001) An immersed-boundary finite-volume method for simulations of flow in complex geometries, J. Comput. Phys. 171, 1, 132–150 [CrossRef] [Google Scholar]
  • Fedkiw R.P., Marquina A., Merriman B. (1999) An isobaric fix for the overheating problem in multimaterial compressible flows, J. Comput. Phys. 148, 2, 545–578 [CrossRef] [Google Scholar]
  • Meakin R. (2001) Object X-rays for cutting holes in composite overset structured grids, in: Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, June 2001 [Google Scholar]
  • Noack, R. (2016) On overset hole cutting and the problems encountered, in: 13th Symposium on Overset Composite Grids And Solution Technology, Mukilteo, WA, USA [Google Scholar]
  • Bonet J., Peraire J. (1991) An alternating digital tree (ADT) algorithm for 3D geometric searching and intersection problems, Int. J. Numer. Methods Eng. 31, 1, 1–17 [Google Scholar]
  • Chesshire, G., Henshaw W. (1990) Composite overlapping meshes for the solution of partial differential equations, J. Comput. Phys. 90, 1, 1–64 [Google Scholar]
  • Lodato G., Domingo P., Vervisch L. (2008) Three-dimensional boundary conditions for direct and large-eddy simulation of compressible viscous flows, J. Comput. Phys. 227, 10, 5105–5143 [CrossRef] [Google Scholar]
  • Roman F., Armenio V., Frohlich J. (2009) A simple wall-layer model for large eddy simulation with immersed boundary method, Phys. of Fluids 21, 10, 101701 [CrossRef] [Google Scholar]
  • Lee J., Cho M., Choi H. (2013) Large eddy simulations of turbulent channel and boundary layer flows at high Reynolds number with mean wall shear stress boundary condition, Phys. Fluids 25, 11, 110808 [CrossRef] [Google Scholar]
  • Yang X.I.A., Sadique J., Mittal R., Meneveau C. (2015) Integral wall model for large eddy simulations of wall-bounded turbulent flows, Phys. Fluids 27, 2, 025112 [CrossRef] [Google Scholar]
  • Hoyas S., Jimenez J. (2006) Scaling of the velocity fluctuations in turbulent channels up to ReT = 2003, Phys. Fluids 18, 1, 011702 [CrossRef] [Google Scholar]
  • Meneveau C., Lund T.S., Cabot W.H. (1996) A Lagrangian dynamic subgrid-scale model of turbulence, J. Fluid Mech. 319, 353–385 [CrossRef] [Google Scholar]
  • Silvis M.H., Remmerswaal R.A., Verstappen R. (2017) Physical consistency of subgrid-scale models for large-eddy simulation of incompressible turbulent flows, Phys. Fluids 29, 1, 015105 [CrossRef] [Google Scholar]
  • Kobayashi H. (2005) The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow, Phys. Fluids 17, 4, 045104 [CrossRef] [Google Scholar]
  • Smagorinsky J. (1963) General circulation experiments with the primitive equations, Monthly Weather Rev. 91, 3, 99–164 [Google Scholar]
  • Kobayashi H. (2006) Large eddy simulation of magnetohydrodynamic turbulent channel flows with local subgrid-scale model based on coherent structures, Phys. Fluids 18, 4, 045107 [CrossRef] [Google Scholar]
  • Tanahashi M., Miyauchi T. (1995) Small scale eddies in turbulent mixing layer, in: Proceedings of the Tenth Symposium on Turbulent Shear Flows, Vol. 1, pp. 79–84 [Google Scholar]
  • Balarac G., Pitsch H., Raman V. (2008) Development of a dynamic model for the subfilter scalar variance using the concept of optimal estimators, Phys. Fluids 20, 035114 [CrossRef] [Google Scholar]
  • Yee H., Sandham N., Djomehri M. (1999) Low-dissipative high-order shock-capturing methods using characteristic-based filters, J. Comput. Phys. 150, 1, 199–238 [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Shih T. (2002) Overset grids: Fundamental and practical issues, in Fluid Dynamics and Co-located Conferences, American Institute of Aeronautics and Astronautics, June 2002 [Google Scholar]
  • Laimboeck F.J., Glanz R., Modre E., Rothbauer R.J. (1999) AVL approach for small 4-stroke cylinderhead-, port- and combustion chamber layout, in: SAE Technical Paper, SAE International, 09 [Google Scholar]
  • Hager W.H. (2010) Wastewater Hydraulics, Springer-Verlag, Berlin, Heidelberg [CrossRef] [Google Scholar]
  • Graftieaux L., Michard M., Grosjean N. (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows, Meas. Sci. Technol. 12, 9, 1422 [Google Scholar]
  • J. Heywood, Internal Combustion Engine Fundamentals. Automotive technology series, McGraw-Hill, 1988 [Google Scholar]
  • Lumley J.L. (1967) The structure of inhomogeneous turbulent flows, in: Yaglom A.M., Tatarski V.I. (eds.), Atmospheric turbulence and radio propagation, Nauka, Moscow, pp. 166–178 [Google Scholar]
  • Falkenstein T., Bode M., Kang S., Pitsch H., Arima T., Taniguchi, H. (2015) Large-eddy simulation study on unsteady effects in a statistically stationary SI engine port flow, in: SAE Technical Paper, SAE International, 04 [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.