- Dincer I. (2000) Renewable energy and sustainable development: A crucial review, J. Renew. Sustain. Energy Rev. 4, 157-175. [Google Scholar]
- Strezov V., Evans T.J. (2015) Biomass Processing Technologies. Broken Sound Parkway NW, CRC Press, Taylor & Francis Group, ISBN:978-1-4665-6616-3. [Google Scholar]
- Rosen M.A. (1996) The role of energy efficiency in sustainable development, J. Technol. Soc. 15, 21-26. [Google Scholar]
- Ozturk S., Sozdemir A., Ulger O. (2013) The Real Crisis Waiting for the World: Oil Problem and Energy Security, Int. J. Energy Econ. Policy 3, 74-79. [Google Scholar]
- Birol F. (2017) Key World Energy Statistics, IEA Publications, International Energy Agency, rue de la Federation, Paris, France. [Google Scholar]
- Saidur R., Abdelaziz E.A., Demirbas A., Hossain M.S., Mekhilef S. (2011) A review on biomass as a fuel for boilers, J. Renew.Sustain. Energy Rev. 15, 2262-2289. [Google Scholar]
- Chan F.L., Tanksale A. (2014) Review of recentdevelopments in Ni-basedcatatlysts for biomassgasification, J. Renew. Sustain. Energy Rev. 38, 428-438. [CrossRef] [Google Scholar]
- Tursunov O., Dobrowolski J., Nowak W. (2015) Catalytic energy production from municipal solid waste biomass: Case study in Perlis, Malaysia, World J. Environ. Eng. 3, 7-14. [CrossRef] [Google Scholar]
- Tursunov O., Dobrowolski J.W. (2015) A brief review of application of laser biotechnology as an efficient mechanism for the increase of biomass for bio-energy production via clean thermo-technologies, Am. J. Renew. Sustain. Energy 1, 66-71. [Google Scholar]
- Demirbas A. (2004) Combustion characteristics of different biomass fuels, J. Prog. Energy Combust. Sci. 30, 219-230. [Google Scholar]
- Tursunov O. (2014) A comparison of catalysts zeolite and calcineddolomite for gasproduction from pyrlolysis of municipal solid waste (MSW), J. Ecol.l Eng. 69, 237-243. [CrossRef] [Google Scholar]
- Cheah S., Jablonski W.S., Olstad J.L., Carpenter D.L., Barthelemy K.D., Robichaud D.J., Andrews J.C., Black S.K., Oddo M.D., Westover T.L. (2016) Effects of thermal pretreatment and catalyst on biomass gasification efficiency and syngas composition, J. Green Chem. 18, 6291-6304. [CrossRef] [Google Scholar]
- Pandey A., Bhaskar T., Stocker M., Sukumaran R.K. (2015) Recent advances in thermochemical conversion of biomass, in: Pandey A., Bhaskar T., Stocker M., Sukumaran R.K. (eds). Elsevier Ltd, Oxford. [Google Scholar]
- Ahmad A.A., Zawawi N.A., Kasim F.H., Inayat A., Khasri A. (2016) Assessing the gasification performance of biomass: A review on biomass gasification process conditions, optimization and economic evaluation, J. Renew. Sustain. Energy Rev. 53, 1333-1347. [Google Scholar]
- You S., Wang W., Dai Y., Tong Y.W., Wang Ch. (2016) Comparison of the co-gasification of sewage sludge and food wastes and cost-benefit analysis of gasification- and incineration-based waste treatment schemes, J. Bioresour. Technol. 218, 595-605. [CrossRef] [Google Scholar]
- Xu D., Lin G., Ma Zh., Guo Y., Farooq M.U., Wang Sh. (2017) Partial oxidative gasification of sewage sludge in supercritical water with multicomponent catalyst, J. Chem. Eng. Res. Design 124, 145-151. [CrossRef] [Google Scholar]
- Qian L., Wang Sh., Xu D., Guo Y., Tang X., Wang L. (2016) Treatment of municipal sewage sludge in supercritical water: a review, J. Water Res. 89, 118-131. [CrossRef] [PubMed] [Google Scholar]
- Mukunda H.S., Dasappa S., Paul P.J., Rajan N.K.S., Shrinivasa U. (1994) Gasifiers and combustors for biomass-technology and field studies, J. Energy Sustain. Dev. 1, 27-38. [CrossRef] [Google Scholar]
- Jain A.K., Sharma S.K., Singh D. (1997) Availability and characteristics of paddy husk as a renewable energy source, J. Agric. Eng. 34, 10-14. [Google Scholar]
- Shahbaz M., Yusup S., Inayat A., Patrick D.O., Ammar M. (2017) The influence of catalysts in biomass steam gasification and catalytic potential of coal bottom ash in biomass steam gasification: a review, J. Renew. Sustain. Energy Rev. 73, 468-476. [CrossRef] [Google Scholar]
- Burra K.G., Gupta A.K. (2016) Role of catalyst in solid biomass gasification, in: proc. ASME 2016 Power Conference collocated with the ASME 2016 10th International Conference on Energy Sustainability and the ASME 2016 14th International Conference on Fuel Cell Science, Eng. Technol. doi:10.1115/POWER2016-59039. [Google Scholar]
- Wang B. Sh., Cao J.P., Zhao X.Y., Bian Y., Song Ch., Zhao Y.P., Fan X., Wei X.Y., Takarada T. (2015) Preparation of nickel loaded on lignite char for catalytic gasification of biomass, J. Fuel Proces. Technol. 136, 17-24. [CrossRef] [Google Scholar]
- Maoyun H., Xiao B., Shiming L., Zhiquan H., Xianjun G., Siyi L., Fan Y. (2010) Syngas production from pyrolysis of municipal solid waste (MSW) with dolomite as downstream catalysts, J. Anal. Appl. Pyrolysis 87, 181-187. [Google Scholar]
- Tursunov O., Dobrowolski J., Klima K., Kordon B., Ryczkowski J., Tylko G., Czerski G. (2015) The Influence of Laser Biotechnology on Energetic Value and Chemical Parameters of Rose Multiflora Biomass and Role of Catalysts for bio-energy production from biomass: Case Study in Krakow-Poland, World J. Environ. Eng. 3, 58-66. [Google Scholar]
- Amin K., Yang G.S. (2012) Identification of the MSW Characteristics and Potential of Plastic Recovery at Bakri Landfill, J. Sustain. Dev. 5, 11-17. [Google Scholar]
- Edema M.O., Sichamba V., Ntengwe F.W. (2012) Solid Waste Management-Case Study of Ndola, Zambia, Int. J. Plant Anim. Environ. Sci. 2, 248-255. [Google Scholar]
- Li J., Yan R., Xiao B., Liang D.T., Du L. (2008) Development of nano-NiO/Al2O3 catalyst to be used for tar removal in biomass gasification, J. Environ. Sci. Technol. 42, 6224-6229. [CrossRef] [Google Scholar]
- Wang L., Li D., Koike M., Watanabe H., Xu Y., Nakagawa Y. (2012) Catalytic performance and characterization of Ni-Co catalysts for the steam reforming of biomass tar to synthesis gas, J. Fuel 112, 654-661. [CrossRef] [Google Scholar]
- Furusawa T., Sato T., Sugito H., Miura Y., Ishiyama Y., Sato M. (2007) Hydrogen production from the gasification of lignin with nickel catalysts in supercritical water, Int. J. Hydrog. Energy 32, 699-704. [CrossRef] [Google Scholar]
- Corella J., Aznar M.P., Caballero M.A., Molina G., Toledo J.M. (2008) 140g H2/kg biomassd.a.f. by a CO-shift reactor downstream from a FB biomass gasifier and a catalytic steam reformer, Int. J. Hydrog. Energy 33, 1820-1826. [CrossRef] [Google Scholar]
- Wang J., Cheng G., You Y., Xiao B., Liu Sh., He P., Guo D., Guo X., Zhang G. (2012) Hydrogen-rich gas production by steam gasification of municipal solid waste (MSW) using NiO supported on modified dolomite. Int J. Hydrog. Energy 37, 6503-6510. [CrossRef] [Google Scholar]
- Wu C., Williams P.T. (2010) A novel Ni-Mg-Al-CaO catalyst with the dual functions of catalysis and CO2 sorption for H2 production from the pyrolysis-gasification of polypropylene, J. Fuel 89, 1435-1441. [CrossRef] [Google Scholar]
- Elbaba I.F., Wu C., Williams P.T. (2011) Hydrogen production from the pyrolysis-gasification of waste tires with a nickel/cerium catalyst, Int. J. Hydrog. Energy 36, 6628-6637. [CrossRef] [Google Scholar]
- Rapagna S., Provendier H., Petit C., Kienemann A., Foscolo P.U. (2002) Development of catalysts suitable for hydrogen or syngas production from biomass gasification, J. Biomass Bioenergy 22, 377-388. [CrossRef] [Google Scholar]
- Therdthianwong S., Srisiriwat N., Therdthianwong A., Croiset E. (2011) Reforming of bioethanol over Ni/Al2O3 and Ni/CeZrO2/Al2O3 catalysts in supercritical water for hydrogen production, Int. J. Hydrog. Energy 36, 2877-2886. [CrossRef] [Google Scholar]
- Porada S., Rozwadowski A., Zubek K. (2016) Studies of catalytic coal gasification with steam, Polish J. Chem. Technol. 18, 97-102. [CrossRef] [Google Scholar]
- Zubek K., Czerski G., Porada S. (2017) The influence of catalytic additives on kinetics of coal gasification process, in: Proceedings E3S Web of Conferences, Energy and Fuels 2016, 14, DOI:10.1051/e3sconf/20171402012. [Google Scholar]
- Seo D.K., Park S. Sh., Hwanga J., Yu T. (2010) Study of the pyrolysis of biomass using thermogravimetric analysis (TGA) and concentration measurements of the evolved species, J. Anal. Appl. Pyrol. 89, 66-73. [CrossRef] [Google Scholar]
- Shafizadeh F., McGinnis G.D. (1971) Chemical composition and thermal analysis of cotton wood, J. Carbohydr. Res. 16, 273-277. [CrossRef] [Google Scholar]
- Antal I.M. (1983) Biomass pyrolysis: a review of the literature. Part I-Carbohydrate pyrolysis, in: Boer K.W. and Duffie I.A. (Eds.), J. Adv. Sol. Energy 11, 61-111. [CrossRef] [Google Scholar]
- Walker D.M., Pettit S.L., Wolan J.T., Kuhn J.N. (2012) Synthesis gas production to desired hydrogen to carbon monoxide ratios by tri-reforming of methane using Ni-MgO-(Ce,Zr)O2 catalysts, J. Appl. Catal. A 445, 61-68. [CrossRef] [Google Scholar]
- Porada S., Czerski G., Dziok T., Grzywacz P., Makowska D. (2015) Kinetics of steam gasification of bituminous coals in terms of their use for underground coal gasification, J. Fuel Process. Technol. 130, 282-291. [Google Scholar]
- Chang C.C., Chang H.F., Lin F.J., Lin K.H., Chen C.H. (2011) Biomass gasification for hydrogen production, Int. J. Hydrog. Energy 36, 14252-14260. [CrossRef] [Google Scholar]
- Di G.F., Zaccariello L. (2012) Fluidized bed gasification of a packaging derived fuel: energetic, environmental and economic performances comparison for waste-to-energy plants, J. Energy 42, 331-341. [CrossRef] [Google Scholar]
- Min-Hwan C., Mun T.Y., Kim J.S. (2013) Air gasification of mixed plastic wastes using calcined dolomite and activated carbon in a two-stage gasifier to reduce tar. J. Energy 53, 299-305. [CrossRef] [Google Scholar]
- Moghadam R.A., Yusup S., Azlina W., Nehzati S., Tavasoli A. (2014) Investigation on syngas production via biomass conversion through the integration of pyrolysis and air-steam gasification processes, J. Energy Convers. Manage. 87, 670-675. [Google Scholar]
- Alvarez J., Kumagai S., Wu C., Yoshioka T., Bilbao J., Olazar M., Williams P.T. (2014) Hydrogen production from biomass and plastic mixtures by pyrolysis gasification, Int. J. Hydrog. Energy 39, 10883-10891. [CrossRef] [Google Scholar]
- Arena U., Gregorio F.D. (2014) Energy generation by air gasification of two industrial plastic wastes in a pilot scale fluidized bed reactor, J. Energy 68, 735-743. [CrossRef] [Google Scholar]
- Ma Z., Zhang S.P., Xied Y., Yan Y.J. (2014) A novel integrated process for hydrogen production from biomass, Int. J. Hydrog. Energy 39, 1274-1279. [CrossRef] [Google Scholar]
- Fremaux S., Beheshti S.M., Ghassemi H., Shahsavan-Markadeh R. (2015) An experimental study on hydrogen-rich gas production via steam gasification of biomass in a research-scale fluidized bed, J. Energy Convers. Manage. 91, 427-432. [CrossRef] [Google Scholar]
- Pinto F., Lopes H., Andre R.N., Gulyurtlu I., Cabrita I. (2007) Effect of catalysts in the quality of syngas and by-products obtained by co-gasification of coal and wastes. 1. Tars and nitrogen compounds abatement, J. Fuel 86, 2052-2063. [CrossRef] [Google Scholar]
- Brachi P., Chirone R., Miccio F., Miccio M., Picarelli A., Ruoppolo G. (2014) Fluidized bed co-gasification of biomass and polymeric wastes for a flexible end-use of the syngas: focus on bio-methanol, J. Fuel 128, 88-98. [CrossRef] [Google Scholar]
- Wang C., Wang T., Ma L., Gao Y., Wu C. (2010) Steam reforming of biomass raw fuel gas over NiO-MgO solid solution cordierite monolith catalyst, J. Energy Convers. Manage. 51, 446-451. [CrossRef] [Google Scholar]
- Richardson Y., Blin J., Volle G., Motuzas J., Julbe A. (2010) In situ generation of Ni metal nanoparticles as catalyst for H2-rich syngas production from biomass gasification, J. Appl. Catal. A 382, 220-230. [CrossRef] [Google Scholar]
- Luo S., Zhou Y., Yi C. (2012) Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor, J. Energy 44, 391-395. [CrossRef] [Google Scholar]
- Lorente E., Millan M., Brandon N.P. (2012) Use of gasification syngas in SOFC: impact of real tar on anode materials, Int. J. Hydrog. Energy 37, 7271-7278. [CrossRef] [Google Scholar]
- Hao X.H., Guo L.J., Mao X., Zhang X.M., Chen X.J. (2003) Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water, Int. J. Hydrog. Energy 28, 55-64. [CrossRef] [Google Scholar]
- Andres J.M.D., Narros A., Rodriguez M.E. (2011) Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge, J. Fuel 90, 521-527. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 6, November–December 2017
|
|
---|---|---|
Article Number | 37 | |
Number of page(s) | 16 | |
DOI | https://doi.org/10.2516/ogst/2017037 | |
Published online | 07 December 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.