- Friedlingstein P., Andrew R.M., Rogelj J., Peters G.P., Ganadell J.G., Knutti R., Luderer G., Raupach M.R., Schaeffer M., van Vuuren D.P., Le Quere C. (2014) Persistent growth of CO2 emissions and implications for reaching climate targets, J. Nat. Geosci. 7, 709–715. [CrossRef] [Google Scholar]
- Metz B., Davidson O.R., Bosch P.R., Meyer L.A. (eds.) (2007) Climate Change 2007: Mitigation of Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. [Google Scholar]
- Hu B., Guild C., Suib S.L. (2013) Thermal, electrochemical, and photochemical conversion of CO2 to fuels and value-added products, J. CO2 Util. 1, 18–27. [Google Scholar]
- Bachu S. (2008) CO2 storage in geological media: role, means, status and barriers to deployment, J. Progr. Energy Combust. Sci. 34, 254–273. [CrossRef] [Google Scholar]
- Song C. (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing, J. Catal. Today 115, 2–32. [Google Scholar]
- Duong X., Li F., Zhao N., Xiao F., Wang J., Tan Y. (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method, J. Appl. Catal. B: Environ. 191, 8–17. [CrossRef] [Google Scholar]
- Angelo L., Kobl K., Tejada L.M.M., Zimmermann Y., Parkhomenko K., Roger A.C. (2015) Study of CuZnMOx oxides (M = Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol, J. C. R. Chimie 18, 250–260. [CrossRef] [Google Scholar]
- Zhou X., Su T., Jiang Y., Qin Z., Ji H., Guo Z. (2016) CuO–Fe2O3–CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis, J. Chem. Eng. Sci. 153, 10–20. [CrossRef] [Google Scholar]
- Aresta M., Dibenedetto A., Angelini A. (2013) The changing paradigm in CO2 utilization, J. CO2 Util. 3–4, 65–73. [Google Scholar]
- Olah G.A., Prakash G.K.S., Goeppert A. (2011) Anthropogenic chemical carbon cycle for a sustainable future, J. Am. Chem. Soc. 133, 12881–12898. [CrossRef] [PubMed] [Google Scholar]
- Bansode A., Tidona B., von Rohr P.R., Urakawa A. (2013) Impact of K and Ba promoters on CO2 hydrogenation over CU/Al2O3 catalysts at high pressure, J. Catal. Sci. Technol. 3, 767–778. [CrossRef] [Google Scholar]
- Inui T., Takeguchi T. (1991) Effective conversion of carbon dioxide and hydrogen to hydrocarbons, J. Catal. Today 10, 95–106. [CrossRef] [Google Scholar]
- Li Y., Ma R., He L., Diao Z. (2014) Homogeneous hydrogenation of carbon dioxide to methanol, J. Catal. Sci. Technol. 4, 1498–1512. [CrossRef] [Google Scholar]
- Dai W.L., Luo S.L., Yin S.F., Au C.T. (2009) The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts, J. Appl. Catal. A 366, 2–12. [CrossRef] [Google Scholar]
- Mikkelsen M., Jorgensen M., Krebs F.C. (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide, J. Energy Environ. Sci. 3, 43–81. [CrossRef] [Google Scholar]
- Centi G., Perathoner S.J. (2009) Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, J. Catal. Today 148, 191–205. [CrossRef] [Google Scholar]
- Zhang S., Chen Y., Li F., Lu X., Dai W., Mori R.J. (2006) Fixation and conversion of CO2 using ionic liquids, J. Catal. Today 115, 61–69. [CrossRef] [Google Scholar]
- Liu X., Lu G.Q., Yan Z., Beltramini J. (2003) Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO2, J. Ind. Eng. Chem. Res. 42, 6518–6530. [CrossRef] [Google Scholar]
- Schild C., Wokaun A. (1990) On the mechanism of CO and CO2 hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanol synthesis selectivity, J. Mol. Catal. 63, 243–254. [CrossRef] [Google Scholar]
- Borodko Y., Somorjai G.A. (1999) Catalytic hydrogenation of carbon oxides – a 10-year perspective, J. Appl. Catal. A 186, 355–362. [CrossRef] [Google Scholar]
- Fisher I.A., Bell A.T. (1997) In-situ infrared study of methanol synthesis from H2/CO2 over Cu/SiO2 and Cu/ZrO2/SiO2, J. Catal. 172, 222–237. [CrossRef] [Google Scholar]
- Koeppel R.A., Baiker A. (1992) Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: influence of preparation variables on structural and catalytic properties of catalysts, J. Appl. Catal. A 84, 77–102. [CrossRef] [Google Scholar]
- Jansen W.P.A., Beckers J., Heuvel J.C., Denier A.W., Bliek A., Brongersma H.H. (2002) Dynamic behavior of the surface structure of Cu/ZnO/SiO2 catalysts, J. Catal. 210, 229–236. [CrossRef] [Google Scholar]
- Liu X.M., Lu G.Q., Yan Z.F. (2005) Nanocrystalline zirconia as catalyst support in methanol synthesis, J. Appl. Catal. A 279, 241–245. [CrossRef] [Google Scholar]
- Liu S.H., Wang H.P., Wang H.C., Yang Y.W. (2005) In situ EXAFS studies of copper on ZrO2 during catalytic hydrogenation of CO2, J. Electron Spectrosc. Relat. Phenom. 144–147, 373–376. [CrossRef] [Google Scholar]
- Tang Q.L., Hong Q.J., Liu Z.P. (2009) CO2 fixation into methanol at Cu/ZrO2 interface from first principles kinetic Monte Carlo, J. Catal. 263, 114–122. [CrossRef] [Google Scholar]
- Lei H., Hou Z., Xie J. (2016) Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine, J. Fuel 164, 191–198. [CrossRef] [Google Scholar]
- Dong X., Li F., Zhao N., Xiao F., Wang J., Tan Y. (2016) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method, J. Appl. Catal. B 191, 8–17. [Google Scholar]
- Zhou X., Su T., Jiang Y., Qin Z., Ji H. (2016) CU–Fe2O3–CeO2/HZSM-5 bifunctional catalyst hydrogenated CO2 for enhanced dimethyl ether synthesis, J. Chem. Eng. Sci. 153, 10–20. [CrossRef] [Google Scholar]
- Silva R.J., Pimentel A.F., Monteiro R.S., Mota J.A. (2016) Synthesis of methanol and dimethyl ether from the CO2 hydrogenation over Cu–ZnO supported on Al2O3 and Nb2O5, J. CO2 Util. 15, 83–88. [Google Scholar]
- Weigel J., Koeppel R.A., Baiker A., Wokaun A. (1996) Surface Species in CO and CO2 hydrogenation over copper/zirconia: on the methanol synthesis mechanism, J. Langmuir 12, 5319–5329. [CrossRef] [Google Scholar]
- Fujita S.I., Usui M., Takezawa N. (1992) Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst, J. Catal. 134, 220–225. [CrossRef] [Google Scholar]
- Gines M.J.L., Marchi A.J., Apesteguia C.R. (1997) Kinetic study of the reverse water-gas shift reaction over CuO/ZnO/Al2O3 catalysts, J. Appl. Catal. A 154, 155–171. [CrossRef] [Google Scholar]
- Chiavassa D.L., Collins S.E., Bonivardi A.L., Baltanas M.A. (2009) Methanol synthesis from CO2/H2 using Ga2O3-Pd/silica catalysts: kinetic modeling, J. Chem. Eng. 150, 204–212. [CrossRef] [Google Scholar]
- Lim H.W., Park M.J., Kang S.H., Chae H.J., Bae J.W., Jun K.W. (2009) Modeling of the kinetics for methanol synthesis using Cu/ZnO/Al2O3/ZrO2 catalyst: influence of carbon dioxide during hydrogenation, J. Ind. Eng. Chem. Res. 48, 10448–10455. [CrossRef] [Google Scholar]
- Chen C.S., Cheng W.H., Lin S.S. (2000) Mechanism of CO formation in reverse water-gas shift reaction over Cu/Al2O3 catalyst, J. Catal. Lett. 68, 45–48. [CrossRef] [Google Scholar]
- Chen C.S., Cheng W.H., Lin S.S. (2002) Study of reverse water gas shift reaction by TPD, TPR and CO2 hydrogenation over potassium-promoted Cu/SiO2 catalyst, J. Appl. Catal. A 238, 55–67. [CrossRef] [Google Scholar]
- Chen C.S., Cheng W.H., Lin S.S. (2004) Study of iron-promoted Cu/SiO2 catalyst on high temperature reverse water gas shift reaction, J. Appl. Catal. A 257, 97–106. [CrossRef] [Google Scholar]
- Chen C.S., Wu J.H., Lai T.W. (2010) Carbon dioxide hydrogenation on Cu nanoparticles, J. Phys. Chem. 114, 15021–12028. [Google Scholar]
- Chen C., Ruan C., Zhan Y., Lin X., Zheng Q., Wei K. (2014) The significant role of oxygen vacancy in Cu/ZrO2 catalyst for enhancing water-gas-shift performance, Int. J. Hydrog. Energy 39, 317–324. [CrossRef] [Google Scholar]
- Sloczynski J., Grabowski R., Kozlowska A., Olszewski P., lachowska M., Skrzypek J., Stoch J. (2003) Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO2 catalysts for the methanol synthesis from CO2, J. Appl. Catal. A 249, 129–138. [CrossRef] [Google Scholar]
- Nam S.S., Kim H., Kisham G., Choi M.J., Lee K.W. (1999) Catalytic conversion of carbon dioxide into hydrocarbons over iron supported on alkali ion-exchanged Y-zeolite catalysts, J. Appl. Catal. A 179, 155–163. [CrossRef] [Google Scholar]
- Bakavoli M., Zamani Y., Akbarzadeh M. (2014) Study on the carbon dioxide hydrogenation to hydrocarbons over nanoparticles iron-based catalyst, J. Petrol. Coal. 56, 480–486. [Google Scholar]
- Kiatphuengporn S., Jantaratana P., Limtrakul J., Chareonpanich M. (2016) Magnetic field-enhanced catalytic CO2 hydrogenation and selective conversion to light hydrocarbons over Fe/MCM-41 catalysts, J. Chem. Eng. 306, 866–875. [CrossRef] [Google Scholar]
- Visconti C.C., Martinelli M., Falbo L., Fratalocchi L., Lietti L. (2016) CO2 hydrogenation to hydrocarbons over Co and Fe-based Fischer–Tropsch catalysts, J. Catal. Today 277, 161–170. [CrossRef] [Google Scholar]
- Fischer N., Henkel R., Hettel B., Iglesias M., Schaub G., Claeys M. (2016) Hydrocarbons via CO2 hydrogenation over iron catalysts: the effect of potassium on structure and performance, J. Catal. Lett. 146, 509–517. [CrossRef] [Google Scholar]
- Visconti C.G., Martinelli M., Falbo L., Molina A.I., Lietti L., Forzatti P., Iaquaniello G., Palo E., Picutti B., Brignoli F. (2016) CO2 hydrogenation to lower olefins on a high surface area K-promoted bulk Fe-catalyst, J. Appl. Catal. B 200, 530–542. [CrossRef] [Google Scholar]
- Hu S., Liu M., Ding F., Song Ch., Zhang G., Guo X. (2016) Hydrothermally stable MOFs for CO2 hydrogenation over iron-based catalyst top light olefins, J. CO2 Util. 15, 89–95. [Google Scholar]
- Kangvansura P., Chew L.M., Saengsui W., Santawaja P., Pooarporn Y., Muhler M., Schulz H., Worayingyong A. (2016) Product distribution of CO2 hydrogenation by K- and Mn-promoted Fe catalysts supported on N-functionalized carbon nanotubes, J. Catal. Today 275, 59–65. [CrossRef] [Google Scholar]
- Zhang L.X., Zhang Y.C., Chen S.Y. (2011) Effect of promoter TiO2 on the performance of CuO–ZnO–Al2O3 catalyst for CO2 catalytic hydrogenation to methanol, J. Fuel Chem. Technol. 39, 912–917. [CrossRef] [Google Scholar]
- Huang Ch., Chen Sh., Fei X., Liu D., Zhang Y. (2015) Catalytic hydrogenation of CO2 to methanol: study of synergistic effect on adsorption properties of CO2 and H2 in CuO/ZnO/ZrO2 system, J. Catal. 5, 1846–1861. [CrossRef] [Google Scholar]
- Liaw B.J., Chen Y.Z. (2001) Liquid-phase synthesis of methanol from CO2/H2 over ultrafine CuB catalysts, J. Appl. Catal. A 206, 245–256. [CrossRef] [Google Scholar]
- Prasad P.S.S., Bae J.W., Jun K.W., Lee K.W. (2008) Fischer–Tropsch synthesis by carbon dioxide hydrogenation on Fe-based catalysts, Catal. Surv. Asia 12, 170–183. [CrossRef] [Google Scholar]
- Deerattrakul V., Dittanet P., Sawangphruk M., Kongkachuichay P. (2016) CO2 hydrogenation to methanol using Cu–Zn catalyst supported on reduced grapheme oxide nanosheets, J. CO2 Util. 16, 104–113. [Google Scholar]
- Cai W., Piscina P.R., Toyir J., Homs N. (2015) CO2 hydrogenation to methanol over CuZnGa catalysts prepared using microwave-assisted methods, J. Catal. Today 242, 193–199. [CrossRef] [Google Scholar]
- Ren H., Xu Ch.H., Zhao H.Y., Wang Y.X., Liu J., Liu J.Y. (2015) Methanol synthesis from CO2 hydrogenation over Cu/γ-Al2O3 catalysts modified by ZnO, ZrO2 and MgO, J. Ind. Eng. Chem. 28, 261–267. [CrossRef] [Google Scholar]
- Jeong H., Cho C.H., Kim T.H. (2012) Effect of Zr and pH in the preparation of Cu/ZnO catalysts for the methanol synthesis by CO2 hydrogenation, React. Kinet. Mech. Catal. 106, 435–443. [CrossRef] [Google Scholar]
- Liu Ch., Guo X., Guo Q., Mao D., Yu J., Lu G. (2016) Methanol synthesis from CO2 hydrogenation over copper supported on MgO-modified TiO2, J. Mol. Catal. A 425, 86–93. [CrossRef] [Google Scholar]
- Guo X., Mao D., Lu G., Wang S., Wu G. (2010) Glycine-nitrate combustion synthesis of CuO–ZnO–ZrO2 catalysts for methanol synthesis from CO2 hydrogenation, J. Catal. 271, 178–185. [CrossRef] [Google Scholar]
- Dorner R.W., Hardy D.R., Williams F.W., Willauer H.D. (2010) Effects of ceria-doping on a CO2 hydrogenation iron-manganese catalyst, J. Catal. Commun. 11, 816–819. [CrossRef] [Google Scholar]
- Ning W., Koizumi N., Yamada M. (2009) Researching Fe catalyst suitable for CO2-containing syngas for Fischer–Tropsch synthesis, J. Energy Fuels 23, 4696–4700. [CrossRef] [Google Scholar]
- Ni X., Tan Y., Han Y., Tsubaki N. (2007) Synthesis of isoalkanes over Fe–Zn–Zr/HY composite catalyst through carbon dioxide hydrogenation, J. Catal. Commun. 8, 1711–1714. [CrossRef] [Google Scholar]
- Lee S. Ch., Jang J.H., Lee B.Y., Kim J.S., Kang M., Lee S.B., Choi M.J., Choung S.J. (2004) Promotion of hydrocarbon selectivity in CO2 hydrogenation by Ru component, J. Mol. Catal. A 210, 131–141. [CrossRef] [Google Scholar]
- Riedel T., Claeys M., Schulz H., Schaub G., Nam S.S., Jun K.W., Choi M.J., Kishan G., Lee K.W. (1999) Comparative study of Fischer–Tropsch synthesis with H2/CO and H2/CO2 syngas using Fe- and Co-based catalysts, J. Appl. Catal. A 186, 201–213. [CrossRef] [Google Scholar]
- Zhao G., Zhang Ch., Qin Sh., Xiang H., Li Y. (2008) Effect of interaction between potassium and structural promoters on Fischer–Tropsch performance in iron-based catalysts, J. Mol. Catal. 286, 137–142. [CrossRef] [Google Scholar]
- Dubois J.L., Sayama K., Arakawa H. (1992) CO2 hydrogenation over carbide catalysts, J. Chem. Lett. 21, 5–8. [CrossRef] [Google Scholar]
- Toyir J., de la Piscina P.R., Fierro J.L.G., Homs N. (2001) Highly effective conversion of CO2 to methanol over supported and promoted copper-based catalysts: influence of support and promoter, J. Appl. Catal. B 29, 207–215. [CrossRef] [Google Scholar]
- Siwawut J., Namkhang P., Kongkachuichay P. (2015) Co-metal catalysts on SiO2-TiO2 for methanol production from CO2-effect of preparation methods, J. Chem. Eng. Technol. 38, 2153–2160. [CrossRef] [Google Scholar]
- Kiatphuengporn S., Chareonpanich M., Limtrakul J. (2014) Effect of unimodal and bimodal MCM-41 mesoporous silica supports on activity of Fe–Cu catalysts for CO2 hydrogenation, J. Chem. Eng. 240, 527–553. [CrossRef] [Google Scholar]
- Xiao J., Mao D., Guo X., Yu J. (2015) Effect of TiO2, ZrO2, and TiO2–ZrO2 on the performance of CuO–ZnO catalyst for CO2 hydrogenation to methanol, J. Appl. Surf. Sci. 338, 146–153. [CrossRef] [Google Scholar]
- Saito M. (1998) R&D activities in Japan on methanol synthesis from CO2 and H2, J. Catal. Surv. Jpn. 2, 175. [CrossRef] [Google Scholar]
- Tremblay J.F. (2008) CO2 as feedstock. Mitsui will make methanol from the greenhouse gas, J. Chem. Eng. News 86, 13. [Google Scholar]
- Goehna H., Koenig P. (1994) Producing methanol from CO2, J. Chem. Technol. 6, 36. [Google Scholar]
- Shulenberger A.M., Jonsson F.R., Ingolfsson O., Tran K.C. (2007) Process for producing liquid fuel from carbon dioxide and water, US Patent Appl. 0244208A1. [Google Scholar]
- Bogdan V.I., Kustov L.M. (2015) Reduction of carbon dioxide with hydrogen on a Cu–ZnO mixed catalyst under supercritical conditions, J. Mendeleev. Commun. 25, 446–448. [CrossRef] [Google Scholar]
- Tursunov O., Kustov L., Tilyabaev Z. (2017) Methanol synthesis from the catalytic hydrogenation of CO2 over CuO-ZnO supported on aluminum and silicon oxides, J. Taiwan Inst. Chem. Eng. 78, 416–422. [CrossRef] [Google Scholar]
Open Access
Issue |
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
|
|
---|---|---|
Article Number | 30 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.2516/ogst/2017027 | |
Published online | 20 October 2017 |
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.