Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Article Number 31
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2017029
Published online 07 November 2017
  • Aydin A. (1977) Faulting in sandstone, PhD Thesis, Stanford University, Stanford, California, 282 p.
  • Aydin A. (1978) Small faults formed as deformation bands in sandstone, Pure Appl. Geophys. 116, 913–930. [CrossRef]
  • Caillet G., Batiot, S. (2003) 2D modeling of hydrocarbon migration along and across growth faults: an example from Nigeria, Petrol Geosci 9, 113–124. [CrossRef] [EDP Sciences]
  • Caine J.S., Evans J.P., Forster C.B. (1996) Fault zone architecture and permeability structure, Geology 24, 1025–1028. [CrossRef]
  • Childs C., Walsh J.J., Manzocchi T., Strand J., Nicol A., Tomasso M., Schöpfer M.P.J., Aplin A.C. (2007) Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand, in: Jolley S.J., Barr D., Walsh J.J., Knipe R.J. (eds), Structurally complex reservoirs, Geol. Soc. Lond. Spec. Publ. 292, 235–258. [CrossRef]
  • Cornu T., Gout C., Cacas-Stenz M.-C., Woillez M.-N., Guy N., Bouziat A., Colombo D., Frey, J. (2016) NOMBA an integrated project for coupling basin modeling and geomechanical simulations, in: AAPG Hedberg conference: the future of basin and petroleum system modeling, April 2016.
  • Evans J.P. (1990) Thickness displacement relationships for fault zones, J. Struc. Geol. 12, 8, 1061–1065. [CrossRef]
  • Faille I., Thibaut M., Cacas M.-C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins, Oil Gas Sci. Technol. − Rev. IFP 69, 4, 529–553. [CrossRef] [EDP Sciences]
  • Faulkner D.R., Mitchell T.M., Rutter E.H., Cembrano J. (2008) On the structure and mechanical properties of large strike-slip faults, Geol. Soc. Lond. Spec. Publ. 299, 1, 139–150. [CrossRef]
  • Fisher Q.J., Casey M., Harris S.D., Knipe R.J. (2003) Fluid-flow properties of faults in sandstone: the importance of temperature history, Geology 31, 11, 965–968. [CrossRef]
  • Fredman N., Tveranger J., Semshaug S., Braathen A., Sverdrup E. (2007) Sensitivity of fluid flow to fault core architecture and petrophysical properties of fault rocks in siliciclastic reservoirs: a synthetic fault model study, Petrol. Geosci. 13, 4, 305–320. [CrossRef] [EDP Sciences]
  • Grauls D.J., Baleix J.M. (1994) Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study, Mar. Petrol. Geol., 11, 6, 734–742. [CrossRef]
  • Kacewicz M., Davies R.K., Welch M., Knipe R.J. (2008) An integration of fault rock properties through time with basin modeling, Search Discov, Article #40349.
  • Lander R.H., Larese R.E., Bonnell L.M. (2008) Toward more accurate quartz cement models: the importance of euhedral versus non-euhedral growth rates, AAPG Bull. 92, 11, 1537–1563. [CrossRef]
  • Lander R.H., Walderhaug O. (1999) Porosity prediction through simulation of sandstone compaction and quartz cementation, Am. Assoc. Petrol. Geol. Bull., 83, 433–449.
  • Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. (2009) Geometry of the Nojima fault at Nojima-Hirabayashi, Japan – I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 166, 1649–1667. [CrossRef]
  • Manzocchi T., Walsh J.J., Nell P., Yielding G. (1999) Fault transmissibility multipliers for flow simulation models, Petrol. Geosci., 5, 1, 53–63. [CrossRef]
  • Manzocchi T., Childs C., Walsh J.J. (2010) Faults and fault properties in hydrocarbon flow models, Geofluids, 10, 1–2, 94–113.
  • Micarelli L., Benedicto A., Wibberley C.A.J. (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, J. Struct. Geol., 28, 7, 1214–1227. [CrossRef]
  • Mitchell T.M., Faulkner D.R. (2012) Towards quantifying the matrix permeability of fault damage zones in low porosity rocks, Earth Planet. Sci. Lett., 339, 24–31. [CrossRef]
  • Peters K.E., Magoon L.B., Lampe C., Scheirer A.H., Lillis P.G., Gautier D.L. (2008) A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California (No. 1713-12). US Geological Survey.
  • Revil A., Cathles L.M. (2002) Fluid transport by solitary waves along growing faults: a field example from the South Eugene Island Basin, Gulf of Mexico, Earth Planet. Sci. Lett. 202, 2, 321–335. [CrossRef]
  • Rudkiewicz J.L., Penteado H.D.B., Vear A., Vandenbroucke M., Brigaud F., Wendebourg J., Duppenbecker S. (2000) Chapter 3: Integrated Basin Modeling Helps to Decipher Petroleum Systems, in: AAPG Memoir 73.
  • Schmatz J., Vrolijk P.J., Urai J.L. (2010) Clay smear in normal fault zones – the effect of multilayers and clay cementation in water-saturated model experiments, J. Struct. Geol. 32, 11, 1834–1849. [CrossRef]
  • Schueller S., Braathen A., Fossen H., Tveranger J. (2013) Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: statistical analysis of field data, J. Struct. Geol. 52, 148–162. [CrossRef]
  • Shipton Z.K., Soden A.M., Kirkpatrick J.D. (2006) How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: radiating energy and the physics of faulting, Geophys. Mon. 170, 193–198.
  • Schneider S., Wolf S., Faille I., Pot D. (2000) A 3D basin model for hydrocarbon potential evaluation: application to Congo offshore, Oil Gas Sci. Technol. − Rev. IFP 55, 1, 3–13. [CrossRef] [EDP Sciences]
  • Sperrevik S., Færseth R.B., Gabrielsen R.H. (2000) Experiments on clay smear formation along faults, Petrol. Geosci. 6, 2, 113–123. [CrossRef]
  • Sperrevik S., Gillespie P.A., Fisher Q.J., Halvorsen T., Knipe R.J. (2002) Empirical estimation of fault rock properties, Nor. Petrol. Soc. Spec. Publ. 11, 109–125.
  • Torabi A., Berg S.S. (2011) Scaling of fault attributes: a review, Mar. Petrol. Geol. 28, 1444–1460. [CrossRef]
  • Tunc X., Faille I., Gallouët T., Cacas M.-C., Havé P. (2012) A model for conductive faults with non-matching grids, Comput. Geosci. 16, 2, 277–296, doi:10.1007/s10596-011-9267-x. [CrossRef] [EDP Sciences]
  • Vidale J.E., Li Y.G. (2003) Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature 421, 6922, 524–526. [CrossRef] [PubMed]
  • Walderhaug O. (1996) Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs, Am. Assoc. Petrol. Geol. Bull. 80, 731–745.
  • Wibberley C.A., Yielding G., Di Toro G. (2008) Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. London, Spec. Publ. 299, 1, 5–33. [CrossRef]
  • Wibberley C.A., Gonzalez-Dunia J., Billon O. (2016) Faults as barriers or channels to production-related flow: insights from case studies, Petrol. Geosci., petgeo 2016-057.
  • Wilkins S.J., Naruk S.J. (2007) Quantitative analysis of slip-induced dilation with application to fault seal, AAPG Bull. 91, 1, 97–113. [CrossRef]
  • Yang Y., Aplin A.C. (2010) A permeability-porosity relationship for mudstones, Mar. Petrol. Geol. 27, 8, 1692–1697. [CrossRef]
  • Yielding G., Bretan, P., Freeman, B. (2010) Fault seal calibration: a brief review, Geol. Soc. Lond. Spec. Publ. 347, 243–255. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.