Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Article Number 31
Number of page(s) 12
DOI https://doi.org/10.2516/ogst/2017029
Published online 07 November 2017
  • Aydin A. (1977) Faulting in sandstone, PhD Thesis, Stanford University, Stanford, California, 282 p. [Google Scholar]
  • Aydin A. (1978) Small faults formed as deformation bands in sandstone, Pure Appl. Geophys. 116, 913–930. [CrossRef] [Google Scholar]
  • Caillet G., Batiot, S. (2003) 2D modeling of hydrocarbon migration along and across growth faults: an example from Nigeria, Petrol Geosci 9, 113–124. [CrossRef] [EDP Sciences] [Google Scholar]
  • Caine J.S., Evans J.P., Forster C.B. (1996) Fault zone architecture and permeability structure, Geology 24, 1025–1028. [CrossRef] [Google Scholar]
  • Childs C., Walsh J.J., Manzocchi T., Strand J., Nicol A., Tomasso M., Schöpfer M.P.J., Aplin A.C. (2007) Definition of a fault permeability predictor from outcrop studies of a faulted turbidite sequence, Taranaki, New Zealand, in: Jolley S.J., Barr D., Walsh J.J., Knipe R.J. (eds), Structurally complex reservoirs, Geol. Soc. Lond. Spec. Publ. 292, 235–258. [CrossRef] [Google Scholar]
  • Cornu T., Gout C., Cacas-Stenz M.-C., Woillez M.-N., Guy N., Bouziat A., Colombo D., Frey, J. (2016) NOMBA an integrated project for coupling basin modeling and geomechanical simulations, in: AAPG Hedberg conference: the future of basin and petroleum system modeling, April 2016. [Google Scholar]
  • Evans J.P. (1990) Thickness displacement relationships for fault zones, J. Struc. Geol. 12, 8, 1061–1065. [CrossRef] [Google Scholar]
  • Faille I., Thibaut M., Cacas M.-C., Havé P., Willien F., Wolf S., Agelas L., Pegaz-Fiornet S. (2014) Modeling fluid flow in faulted basins, Oil Gas Sci. Technol. − Rev. IFP 69, 4, 529–553. [CrossRef] [EDP Sciences] [Google Scholar]
  • Faulkner D.R., Mitchell T.M., Rutter E.H., Cembrano J. (2008) On the structure and mechanical properties of large strike-slip faults, Geol. Soc. Lond. Spec. Publ. 299, 1, 139–150. [CrossRef] [Google Scholar]
  • Fisher Q.J., Casey M., Harris S.D., Knipe R.J. (2003) Fluid-flow properties of faults in sandstone: the importance of temperature history, Geology 31, 11, 965–968. [CrossRef] [Google Scholar]
  • Fredman N., Tveranger J., Semshaug S., Braathen A., Sverdrup E. (2007) Sensitivity of fluid flow to fault core architecture and petrophysical properties of fault rocks in siliciclastic reservoirs: a synthetic fault model study, Petrol. Geosci. 13, 4, 305–320. [CrossRef] [EDP Sciences] [Google Scholar]
  • Grauls D.J., Baleix J.M. (1994) Role of overpressures and in situ stresses in fault-controlled hydrocarbon migration: a case study, Mar. Petrol. Geol., 11, 6, 734–742. [CrossRef] [Google Scholar]
  • Kacewicz M., Davies R.K., Welch M., Knipe R.J. (2008) An integration of fault rock properties through time with basin modeling, Search Discov, Article #40349. [Google Scholar]
  • Lander R.H., Larese R.E., Bonnell L.M. (2008) Toward more accurate quartz cement models: the importance of euhedral versus non-euhedral growth rates, AAPG Bull. 92, 11, 1537–1563. [CrossRef] [Google Scholar]
  • Lander R.H., Walderhaug O. (1999) Porosity prediction through simulation of sandstone compaction and quartz cementation, Am. Assoc. Petrol. Geol. Bull., 83, 433–449. [Google Scholar]
  • Lockner D.A., Tanaka H., Ito H., Ikeda R., Omura K., Naka H. (2009) Geometry of the Nojima fault at Nojima-Hirabayashi, Japan – I. A simple damage structure inferred from borehole core permeability, Pure Appl. Geophys., 166, 1649–1667. [CrossRef] [Google Scholar]
  • Manzocchi T., Walsh J.J., Nell P., Yielding G. (1999) Fault transmissibility multipliers for flow simulation models, Petrol. Geosci., 5, 1, 53–63. [CrossRef] [Google Scholar]
  • Manzocchi T., Childs C., Walsh J.J. (2010) Faults and fault properties in hydrocarbon flow models, Geofluids, 10, 1–2, 94–113. [Google Scholar]
  • Micarelli L., Benedicto A., Wibberley C.A.J. (2006) Structural evolution and permeability of normal fault zones in highly porous carbonate rocks, J. Struct. Geol., 28, 7, 1214–1227. [CrossRef] [Google Scholar]
  • Mitchell T.M., Faulkner D.R. (2012) Towards quantifying the matrix permeability of fault damage zones in low porosity rocks, Earth Planet. Sci. Lett., 339, 24–31. [CrossRef] [Google Scholar]
  • Peters K.E., Magoon L.B., Lampe C., Scheirer A.H., Lillis P.G., Gautier D.L. (2008) A four-dimensional petroleum systems model for the San Joaquin Basin Province, California: Chapter 12 in Petroleum systems and geologic assessment of oil and gas in the San Joaquin Basin Province, California (No. 1713-12). US Geological Survey. [Google Scholar]
  • Revil A., Cathles L.M. (2002) Fluid transport by solitary waves along growing faults: a field example from the South Eugene Island Basin, Gulf of Mexico, Earth Planet. Sci. Lett. 202, 2, 321–335. [CrossRef] [Google Scholar]
  • Rudkiewicz J.L., Penteado H.D.B., Vear A., Vandenbroucke M., Brigaud F., Wendebourg J., Duppenbecker S. (2000) Chapter 3: Integrated Basin Modeling Helps to Decipher Petroleum Systems, in: AAPG Memoir 73. [Google Scholar]
  • Schmatz J., Vrolijk P.J., Urai J.L. (2010) Clay smear in normal fault zones – the effect of multilayers and clay cementation in water-saturated model experiments, J. Struct. Geol. 32, 11, 1834–1849. [CrossRef] [Google Scholar]
  • Schueller S., Braathen A., Fossen H., Tveranger J. (2013) Spatial distribution of deformation bands in damage zones of extensional faults in porous sandstones: statistical analysis of field data, J. Struct. Geol. 52, 148–162. [CrossRef] [Google Scholar]
  • Shipton Z.K., Soden A.M., Kirkpatrick J.D. (2006) How thick is a fault? Fault displacement-thickness scaling revisited, in: Earthquakes: radiating energy and the physics of faulting, Geophys. Mon. 170, 193–198. [Google Scholar]
  • Schneider S., Wolf S., Faille I., Pot D. (2000) A 3D basin model for hydrocarbon potential evaluation: application to Congo offshore, Oil Gas Sci. Technol. − Rev. IFP 55, 1, 3–13. [CrossRef] [EDP Sciences] [Google Scholar]
  • Sperrevik S., Færseth R.B., Gabrielsen R.H. (2000) Experiments on clay smear formation along faults, Petrol. Geosci. 6, 2, 113–123. [CrossRef] [Google Scholar]
  • Sperrevik S., Gillespie P.A., Fisher Q.J., Halvorsen T., Knipe R.J. (2002) Empirical estimation of fault rock properties, Nor. Petrol. Soc. Spec. Publ. 11, 109–125. [Google Scholar]
  • Torabi A., Berg S.S. (2011) Scaling of fault attributes: a review, Mar. Petrol. Geol. 28, 1444–1460. [CrossRef] [Google Scholar]
  • Tunc X., Faille I., Gallouët T., Cacas M.-C., Havé P. (2012) A model for conductive faults with non-matching grids, Comput. Geosci. 16, 2, 277–296, doi:10.1007/s10596-011-9267-x. [CrossRef] [EDP Sciences] [Google Scholar]
  • Vidale J.E., Li Y.G. (2003) Damage to the shallow Landers fault from the nearby Hector Mine earthquake, Nature 421, 6922, 524–526. [CrossRef] [PubMed] [Google Scholar]
  • Walderhaug O. (1996) Kinetic modeling of quartz cementation and porosity loss in deeply buried sandstone reservoirs, Am. Assoc. Petrol. Geol. Bull. 80, 731–745. [Google Scholar]
  • Wibberley C.A., Yielding G., Di Toro G. (2008) Recent advances in the understanding of fault zone internal structure: a review, Geol. Soc. London, Spec. Publ. 299, 1, 5–33. [CrossRef] [Google Scholar]
  • Wibberley C.A., Gonzalez-Dunia J., Billon O. (2016) Faults as barriers or channels to production-related flow: insights from case studies, Petrol. Geosci., petgeo 2016-057. [Google Scholar]
  • Wilkins S.J., Naruk S.J. (2007) Quantitative analysis of slip-induced dilation with application to fault seal, AAPG Bull. 91, 1, 97–113. [CrossRef] [Google Scholar]
  • Yang Y., Aplin A.C. (2010) A permeability-porosity relationship for mudstones, Mar. Petrol. Geol. 27, 8, 1692–1697. [CrossRef] [Google Scholar]
  • Yielding G., Bretan, P., Freeman, B. (2010) Fault seal calibration: a brief review, Geol. Soc. Lond. Spec. Publ. 347, 243–255. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.