Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Issue
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 29
Number of page(s) 13
DOI https://doi.org/10.2516/ogst/2017019
Published online 06 October 2017
  • Kalghatgi G.T. (2014). Developments in internal combustion engines and implications for combustion science and future transport fuels, Proc. Combust. Inst. 35, 101–115. [CrossRef] [Google Scholar]
  • URL https://ecn.sandia.gov [Google Scholar]
  • Pope S.B. (1985) PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11, 2, 119–192. [CrossRef] [Google Scholar]
  • Klimenko A.Y., Bilger R.W. (1999) Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25, 6, 595–687. [CrossRef] [Google Scholar]
  • Peters N. (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10, 3, 319–339. [CrossRef] [Google Scholar]
  • Pitsch H., Wan Y.P., Peters N. (1995) Numerical investigation of soot formation and oxidation under Diesel engine conditions, SAE Technical Paper 952357. [Google Scholar]
  • Pitsch H., Chen M., Peters N. (1998) Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames, Symp. Int. Combust. 27, 1, 1057–1064. [CrossRef] [Google Scholar]
  • Barths H., Hasse C., Bikas G., Peters N. (2000) Simulation of combustion in direct injection Diesel engines using a Eulerian particle flamelet model, Proc. Combust. Inst. 28, 1, 1161–1168. [CrossRef] [Google Scholar]
  • D’Errico G., Lucchini T., Contino F., Jangi M., Bai X.S. (2014) Comparison of well-mixed and multiple representative interactive flamelet approaches for Diesel spray combustion modelling, Combust. Theor. Model. 18, 1, 65–88. [CrossRef] [Google Scholar]
  • Pei Y., Som S., Pomraning E., Senecal P.K., Skeen S.A., Manin J., Pickett L.M. (2015) Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions, Combust. Flame 162, 12, 4442–4455. [CrossRef] [Google Scholar]
  • Blomberg C.K., Zeugin L., Pandurangi S.S., Bolla M., Boulouchos K., Wright Y.M. (2016) Modeling split injections of ECN “Spray A” using a conditional moment closure combustion model with RANS and LES, SAE Int. J. Engines 9, 2107–2119. [Google Scholar]
  • Wehrfritz A., Kaario O., Vuorinen V., Somers B. (2016) Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds, Combust. Flame 167, 113–131. [CrossRef] [Google Scholar]
  • Bekdemir C., Somers L.M.T., de Goey L.P.H., Tillou J., Angelberger C. (2013) Predicting Diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics, Proc. Combust. Inst. 34, 2, 3067–3074. [CrossRef] [Google Scholar]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3, 7, 1760–1765. [NASA ADS] [CrossRef] [Google Scholar]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray A, Atomization Sprays 23, 5, 419–442. [CrossRef] [Google Scholar]
  • Senecal P.K., Pomraning E., Xue Q., Som S., Banerjee S., Hu B., Liu K., Deur J.M. (2014) Large eddy simulation of vaporizing sprays considering multi-injection averaging and grid-convergent mesh resolution, J. Eng. Gas Turbines Power 136, 11, 111504. [CrossRef] [Google Scholar]
  • Bode M., Falkenstein T., Le Chenadec V., Kang S., Pitsch H., Arima T., Taniguchi H. (2015) A new Euler/Lagrange approach for multiphase simulations of a multi-hole GDI injector, SAE Technical Paper. 2015-01-0949. SAE International. [Google Scholar]
  • Bode M., Davidovic M., Pitsch H. (2017) Multi-scale coupling for predictive injector simulations, Springer International Publishing, Cham, Switzerland, pp. 96–108. [Google Scholar]
  • Miller R.S., Harstad K., Bellan J. (1998) Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, Int. J. Multiphase Flow 24, 6, 1025–1055. [CrossRef] [Google Scholar]
  • Raman V., Pitsch H., Fox R.O. (2006) Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion, Combust. Theor. Model. 10, 3, 439–458. [CrossRef] [Google Scholar]
  • Doran E.M. (2011) A multi-dimensional flamelet model for ignition in multi-feed combustion systems, PhD Thesis, Stanford University, Stanford, CA. [Google Scholar]
  • Pitsch H., Steiner H. (2000) Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion, Proc. Combust. Inst. 28, 1, 41–49. [CrossRef] [Google Scholar]
  • Liu X.-D., Osher S., Chan T. (1994) Weighted essentially nonoscillatory schemes, J. Comput. Phys. 115, 1, 200–212. [NASA ADS] [CrossRef] [MathSciNet] [Google Scholar]
  • Desjardins O., Blanquart G., Balarac G., Pitsch H. (2008) High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227, 15, 7125–7159. [CrossRef] [MathSciNet] [Google Scholar]
  • Mittal V., Kang S., Doran E., Cook D., Pitsch H. (2014) LES of gas exchange in IC engines, Oil Gas Sci. Technol. – Rev. IFP 69, 1, 29–40. [CrossRef] [EDP Sciences] [Google Scholar]
  • Dukowicz J.K. (1980) A particle-fluid numerical model for liquid sprays, J. Comput. Phys. 35, 2, 229–253. [CrossRef] [MathSciNet] [Google Scholar]
  • Apte S.V., Mahesh K., Lundgren T. (2008) Accounting for finite-size effects in simulations of disperse particle-laden flows, Int. J. Multiphase Flow 34, 3, 260–271. [CrossRef] [Google Scholar]
  • Pickett L.M., Genzale C.L., Bruneaux G., Malbec L.-M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of Diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 156–181. [CrossRef] [Google Scholar]
  • Pickett L.M., Manin J., Genzale C.L., Siebers D.L., Musculus M.P.B., Idicheria C.A. (2011) Relationship between Diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction, SAE Int. J. Engines 4, 764–799. [CrossRef] [Google Scholar]
  • Skeen S.A., Manin J., Pickett L.M. (2015) Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc. Combust. Inst. 35, 3, 3167–3174. [CrossRef] [Google Scholar]
  • Knudsen E., Shashank, Pitsch H. (2015) Modeling partially premixed combustion behavior in multiphase LES, Combust. Flame 162, 1, 159–180. [CrossRef] [Google Scholar]
  • Ham F., Apte S., Iaccarino G., Wu X., Herrmann M., Constantinescu G., Mahesh K., Moin P. (2003) Unstructured LES of reacting multiphase flows in realistic gas turbine combustors, in CTR annual research briefs, pp. 139–160. [Google Scholar]
  • Narayanaswamy K., Pepiot P., Pitsch H. (2014) A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates, Combust. Flame 161, 4, 866–884. [CrossRef] [Google Scholar]
  • Vasu S.S., Davidson D.F., Hong Z., Vasudevan V., Hanson R.K. (2009) N-dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst. 32, 1, 173–180. [CrossRef] [Google Scholar]
  • Pepiot-Desjardins P., Pitsch H. (2008) An efficient error propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154, 67–81. [CrossRef] [Google Scholar]
  • Pepiot-Desjardins P., Pitsch H. (2008) An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms, Combust. Theor. Model. 12, 6, 1089–1108. [CrossRef] [Google Scholar]
  • Frenklach M. (1984) Systematic optimization of a detailed kinetic model using a methane ignition example, Combust. Flame 58, 1, 69–72. [CrossRef] [Google Scholar]
  • Lamoureux N., Desgroux P., El Bakali A., Pauwels J.F. (2010) Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames, Combust. Flame 157, 10, 1929–1941. [CrossRef] [Google Scholar]
  • Narayanaswamy K., Blanquart G., Pitsch H. (2010) A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame 157, 10, 1879–1898. [CrossRef] [Google Scholar]
  • Idicheria C.A., Pickett L.M. (2007) Quantitative mixing measurements in a vaporizing Diesel spray by Rayleigh imaging, SAE Technical Paper. 2007-01-0647. SAE International. [Google Scholar]
  • Jülich Supercomputing Centre (2015) JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre, Journal of Large-Scale Research Facilities 1, 1–5 . [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.