Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Open Access
Oil & Gas Science and Technology - Rev. IFP Energies nouvelles
Volume 72, Number 5, September–October 2017
Dossier: LES4ICE'16: LES for Internal Combustion Engine Flows Conference
Article Number 29
Number of page(s) 13
Published online 06 October 2017
  • Kalghatgi G.T. (2014). Developments in internal combustion engines and implications for combustion science and future transport fuels, Proc. Combust. Inst. 35, 101–115. [CrossRef]
  • URL
  • Pope S.B. (1985) PDF methods for turbulent reactive flows, Prog. Energy Combust. Sci. 11, 2, 119–192. [CrossRef]
  • Klimenko A.Y., Bilger R.W. (1999) Conditional moment closure for turbulent combustion, Prog. Energy Combust. Sci. 25, 6, 595–687. [CrossRef]
  • Peters N. (1984) Laminar diffusion flamelet models in non-premixed turbulent combustion, Prog. Energy Combust. Sci. 10, 3, 319–339. [CrossRef]
  • Pitsch H., Wan Y.P., Peters N. (1995) Numerical investigation of soot formation and oxidation under Diesel engine conditions, SAE Technical Paper 952357.
  • Pitsch H., Chen M., Peters N. (1998) Unsteady flamelet modeling of turbulent hydrogen-air diffusion flames, Symp. Int. Combust. 27, 1, 1057–1064. [CrossRef]
  • Barths H., Hasse C., Bikas G., Peters N. (2000) Simulation of combustion in direct injection Diesel engines using a Eulerian particle flamelet model, Proc. Combust. Inst. 28, 1, 1161–1168. [CrossRef]
  • D’Errico G., Lucchini T., Contino F., Jangi M., Bai X.S. (2014) Comparison of well-mixed and multiple representative interactive flamelet approaches for Diesel spray combustion modelling, Combust. Theor. Model. 18, 1, 65–88. [CrossRef]
  • Pei Y., Som S., Pomraning E., Senecal P.K., Skeen S.A., Manin J., Pickett L.M. (2015) Large eddy simulation of a reacting spray flame with multiple realizations under compression ignition engine conditions, Combust. Flame 162, 12, 4442–4455. [CrossRef]
  • Blomberg C.K., Zeugin L., Pandurangi S.S., Bolla M., Boulouchos K., Wright Y.M. (2016) Modeling split injections of ECN “Spray A” using a conditional moment closure combustion model with RANS and LES, SAE Int. J. Engines 9, 2107–2119.
  • Wehrfritz A., Kaario O., Vuorinen V., Somers B. (2016) Large eddy simulation of n-dodecane spray flames using flamelet generated manifolds, Combust. Flame 167, 113–131. [CrossRef]
  • Bekdemir C., Somers L.M.T., de Goey L.P.H., Tillou J., Angelberger C. (2013) Predicting Diesel combustion characteristics with large-eddy simulations including tabulated chemical kinetics, Proc. Combust. Inst. 34, 2, 3067–3074. [CrossRef]
  • Germano M., Piomelli U., Moin P., Cabot W.H. (1991) A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A: Fluid Dyn. 3, 7, 1760–1765. [NASA ADS] [CrossRef]
  • Wehrfritz A., Vuorinen V., Kaario O., Larmi M. (2013) Large eddy simulation of high-velocity fuel sprays: studying mesh resolution and breakup model effects for spray A, Atomization Sprays 23, 5, 419–442. [CrossRef]
  • Senecal P.K., Pomraning E., Xue Q., Som S., Banerjee S., Hu B., Liu K., Deur J.M. (2014) Large eddy simulation of vaporizing sprays considering multi-injection averaging and grid-convergent mesh resolution, J. Eng. Gas Turbines Power 136, 11, 111504. [CrossRef]
  • Bode M., Falkenstein T., Le Chenadec V., Kang S., Pitsch H., Arima T., Taniguchi H. (2015) A new Euler/Lagrange approach for multiphase simulations of a multi-hole GDI injector, SAE Technical Paper. 2015-01-0949. SAE International.
  • Bode M., Davidovic M., Pitsch H. (2017) Multi-scale coupling for predictive injector simulations, Springer International Publishing, Cham, Switzerland, pp. 96–108.
  • Miller R.S., Harstad K., Bellan J. (1998) Evaluation of equilibrium and non-equilibrium evaporation models for many-droplet gas-liquid flow simulations, Int. J. Multiphase Flow 24, 6, 1025–1055. [CrossRef]
  • Raman V., Pitsch H., Fox R.O. (2006) Eulerian transported probability density function sub-filter model for large-eddy simulations of turbulent combustion, Combust. Theor. Model. 10, 3, 439–458. [CrossRef]
  • Doran E.M. (2011) A multi-dimensional flamelet model for ignition in multi-feed combustion systems, PhD Thesis, Stanford University, Stanford, CA.
  • Pitsch H., Steiner H. (2000) Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion, Proc. Combust. Inst. 28, 1, 41–49. [CrossRef]
  • Liu X.-D., Osher S., Chan T. (1994) Weighted essentially nonoscillatory schemes, J. Comput. Phys. 115, 1, 200–212. [NASA ADS] [CrossRef] [MathSciNet]
  • Desjardins O., Blanquart G., Balarac G., Pitsch H. (2008) High order conservative finite difference scheme for variable density low Mach number turbulent flows, J. Comput. Phys. 227, 15, 7125–7159. [CrossRef] [MathSciNet]
  • Mittal V., Kang S., Doran E., Cook D., Pitsch H. (2014) LES of gas exchange in IC engines, Oil Gas Sci. Technol. – Rev. IFP 69, 1, 29–40. [CrossRef] [EDP Sciences]
  • Dukowicz J.K. (1980) A particle-fluid numerical model for liquid sprays, J. Comput. Phys. 35, 2, 229–253. [CrossRef] [MathSciNet]
  • Apte S.V., Mahesh K., Lundgren T. (2008) Accounting for finite-size effects in simulations of disperse particle-laden flows, Int. J. Multiphase Flow 34, 3, 260–271. [CrossRef]
  • Pickett L.M., Genzale C.L., Bruneaux G., Malbec L.-M., Hermant L., Christiansen C., Schramm J. (2010) Comparison of Diesel spray combustion in different high-temperature, high-pressure facilities, SAE Int. J. Engines 3, 156–181. [CrossRef]
  • Pickett L.M., Manin J., Genzale C.L., Siebers D.L., Musculus M.P.B., Idicheria C.A. (2011) Relationship between Diesel fuel spray vapor penetration/dispersion and local fuel mixture fraction, SAE Int. J. Engines 4, 764–799. [CrossRef]
  • Skeen S.A., Manin J., Pickett L.M. (2015) Simultaneous formaldehyde PLIF and high-speed schlieren imaging for ignition visualization in high-pressure spray flames, Proc. Combust. Inst. 35, 3, 3167–3174. [CrossRef]
  • Knudsen E., Shashank, Pitsch H. (2015) Modeling partially premixed combustion behavior in multiphase LES, Combust. Flame 162, 1, 159–180. [CrossRef]
  • Ham F., Apte S., Iaccarino G., Wu X., Herrmann M., Constantinescu G., Mahesh K., Moin P. (2003) Unstructured LES of reacting multiphase flows in realistic gas turbine combustors, in CTR annual research briefs, pp. 139–160.
  • Narayanaswamy K., Pepiot P., Pitsch H. (2014) A chemical mechanism for low to high temperature oxidation of n-dodecane as a component of transportation fuel surrogates, Combust. Flame 161, 4, 866–884. [CrossRef]
  • Vasu S.S., Davidson D.F., Hong Z., Vasudevan V., Hanson R.K. (2009) N-dodecane oxidation at high-pressures: Measurements of ignition delay times and OH concentration time-histories, Proc. Combust. Inst. 32, 1, 173–180. [CrossRef]
  • Pepiot-Desjardins P., Pitsch H. (2008) An efficient error propagation-based reduction method for large chemical kinetic mechanisms, Combust. Flame 154, 67–81. [CrossRef]
  • Pepiot-Desjardins P., Pitsch H. (2008) An automatic chemical lumping method for the reduction of large chemical kinetic mechanisms, Combust. Theor. Model. 12, 6, 1089–1108. [CrossRef]
  • Frenklach M. (1984) Systematic optimization of a detailed kinetic model using a methane ignition example, Combust. Flame 58, 1, 69–72. [CrossRef]
  • Lamoureux N., Desgroux P., El Bakali A., Pauwels J.F. (2010) Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames, Combust. Flame 157, 10, 1929–1941. [CrossRef]
  • Narayanaswamy K., Blanquart G., Pitsch H. (2010) A consistent chemical mechanism for oxidation of substituted aromatic species, Combust. Flame 157, 10, 1879–1898. [CrossRef]
  • Idicheria C.A., Pickett L.M. (2007) Quantitative mixing measurements in a vaporizing Diesel spray by Rayleigh imaging, SAE Technical Paper. 2007-01-0647. SAE International.
  • Jülich Supercomputing Centre (2015) JUQUEEN: IBM Blue Gene/Q supercomputer system at the Jülich supercomputing centre, Journal of Large-Scale Research Facilities 1, 1–5 . [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.