
D o s s i e r
SimRace 2015: Numerical Methods and High Performance Computing for Industrial Fluid Flows

SimRace 2015 : Méthodes numériques et calcul haute performance pour la simulation d’écoulements complexes

ArcFVDSL, a DSEL Combined to HARTS, a Runtime

System Layer to Implement Efficient Numerical Methods

to Solve Diffusive Problems on New Heterogeneous

Hardware Architecture

Jean-Marc Gratien*

IFP Energies nouvelles, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison Cedex - France
e-mail: jean-marc.gratien@ifpen.fr

* Corresponding author

Abstract—Nowadays, some frameworks likeArcane andDune offer a number of advanced tools to deal
with the complexity related to parallelism, meshes and linear solvers. However, they do not handle the
high level complexity related to discretization methods and physical models. Generative programming
and Domain Specific Languages (DSL) are key technologies allowing to write code with a high level
expressive language and take advantage of the efficiency of generated code with low level services.
DSL may be embedded in host languages like Python or C++. Such languages, named in that case
Domain Specific Embedded Languages (DSEL), are applied for instance in frameworks like Fenics
or Feel++ which are dedicated to the domain of Finite Element (FE) methods and Galerkin methods.
ArcFVDSL is a DSEL developed on top of the Arcane framework, aiming to implement various
lowest order methods (Finite-Volume (FV), Mimetic Finite Difference (MFD), Mixed Hybrid Finite
Volume (MHFV), etc.) for diffusive problems on general meshes. In this paper, we present various
implementations of different complex academic problems. We focus on the capability of the language
to allow the description and the resolution of these problems with several lowest-order methods. We
illustrate the benefits of such technology combined to runtime system tools like Heterogeneous
Abstract RunTime System (HARTS) and its ability to handle seamlessly new heterogeneous
architectures with multi-core processors enhanced by General Purpose computing on Graphics
Processing Units (GP-GPU). We present the performance results of each implementation on different
kinds of heterogeneous hardware architecture.

Résumé — ArcFVDSL, un DSEL combiné à HARTS, un support d’exécution pour développer
des méthodes numériques efficaces pour résoudre des problèmes diffusifs sur architectures
hétérogènes — Les simulateurs industriels doivent intégrer à la fois des modèles physiques complets
et des méthodes de discrétisation évoluées, tout en préservant de bonnes performances sur les
diverses architectures matérielles. Leur mise au point nécessite donc de gérer de manière efficace
(i) la complexité des modèles physiques sous-jacents, souvent exprimés sous la forme de systèmes
d’Équations aux Dérivées Partielles (EDP) ; (ii) la complexité des méthodes numériques utilisées, qui
continuent à évoluer avec l’émergence de nouveaux besoins ; (iii) la complexité des services
numériques de bas niveau (gestion du parallélisme, de la mémoire, des interconnexions, GP-GPU)
nécessaires pour tirer partie des architectures hardware modernes ; (iv) la complexité liée aux
langages informatiques, dont l’évolution doit être maîtrisée sous peine d’obsolescence du code.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12
� J.-M. Gratien, published by IFP Energies nouvelles, 2017
DOI: 10.2516/ogst/2017007

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://ogst.ifpenergiesnouvelles.fr/
http://ogst.ifpenergiesnouvelles.fr/
http://ifpenergiesnouvelles.fr/
https://doi.org/10.2516/ogst/2017007

Tous ces requis doivent être remplis pour bénéficier pleinement des nouvelles architectures massivement
parallèles et hiérarchiques. Idéalement, la complexité liée aux modèles physiques et aux méthodes
numériques se gère mieux par des langages de haut niveau, qui permettent de cacher les détails
informatiques. En revanche, l’efficacité des composantes de bas niveau demande un accès direct aux
spécificités hardware. De nos jours, un certain nombre de frameworks comme Arcane et Dune
proposent un nombre avancé de services pour gérer le parallélisme, les maillages ou les solveurs
linéaires. Ils ne permettent pas en revanche d’appréhender la complexité des méthodes numériques.
Les paradigmes de programmation générative et de langages spécifiques aux domaines (DSL) sont
des technologies clé qui permettent d’écrire des codes avec un haut niveau d’expressivité et de
pouvoir tirer partie de l’efficacité des codes générés avec des services bas niveau spécifiques aux
architectures matérielles cibles. Nous présentons ArcFVDSL, un tel langage dédié aux méthodes de
bas ordre (Volumes-Finis, Différences Finies Mimétiques, Volumes-finis Mixtes Hybrides,. . .) pour
résoudre des problèmes diffusifs sur maillages généraux. Nous montrons comment, associé à des
supports d’exécution tels que HARTS (Heterogeneous Abstract RunTime System), ce langage permet
d’appréhender sans effort les nouvelles architectures à base de processeurs multi-cœurs,
éventuellement accélérés avec des cartes GP-GPU (General Purpose computing on Graphics
Processing Units). Nous présentons un certain nombre de cas académiques et des résultats de
performances sur les nouvelles architectures.

INTRODUCTION

Industrial simulation softwares have to manage: (i) the
complexity of the underlying physical models, usually
expressed in terms of a Partial Differential Equation (PDE)
system completed with algebraic closure laws, (ii) the
complexity of the numerical methods used to solve the
PDE system, and finally (iii) the complexity of the low level
computer science services required to have efficient software
on modern hardware. Robust and effective Finite Volume
(FV) methods as well as advanced programming techniques
need to be combined in order to fully benefit from massively
parallel architectures (implementation of parallelism, mem-
ory handling, design of connections). Moreover, the above
methodologies and technologies have become more and
more sophisticated and too complex to be handled by physi-
cists alone. Today, this complexity management becomes a
key issue for the development of scientific software.

A number of existing frameworks already offer advanced
tools to deal with the complexity related to parallelism. They
hide hardware complexity and provide low level algorithms
dealing directly with hardware specificities for performance
reasons. They often offer services to manage mesh data
services and linear algebra services which are key elements
for efficient parallel software. However, all these frame-
works often provide only partial answers to the problem as
they only deal with hardware complexity and low level
numerical complexity like linear algebra. The complexity
related to discretization methods and physical models
lacks tools to help physicists develop complex applications.

New paradigms for scientific software must be developed to
help them seamlessly handle the different levels of complex-
ity so that they can focus on their specific domain.

Generative programming, component engineering and
Domain Specific Languages (DSL) are key technologies to
make the development of complex applications easier to
physicists, hiding the complexity of numerical methods
and low level computer science services. These paradigms
allow to write code with a high level expressive language
and take advantage of the efficiency of generated code for
low level services close to hardware specificities. Their
application to scientific computing has been limited so far
to Finite Element (FE) methods, for which a unified
mathematical framework has been existing for a long time.
Such kinds of DSL have been developed for FE or Galerkin
methods in projects like Freefem, Getdp, Getfem++,
Sundance, Feel++ and Fenics. In these projects, they are
embedded in host languages like Python or C++ and are
named Domain Specific Embedded Languages (DSEL).

Over the last few years, we have extended this kind of
approach to lowest-order methods to solve the PDE sys-
tems resulting from geo modeling applications. Indeed, a
recent consistent unified mathematical framework which
allows a unified description of a large family of these meth-
ods has emerged. It enables then, as for FE methods, the
design of a high level language inspired from the mathe-
matical notation. Such languages help then physicist to
implement their application writing the mathematical for-
mulation at a high level, hiding the complexity of numeri-
cal methods and low level computer science services

Page 2 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12

guaranty of high performance. We have developed such a
language, that we have embedded in the C++ language,
on top of Arcane plateform [1]. We have used the Boost
Proto library [2], a powerful framework providing tools
to design this DSEL. In [3] we have presented ArcFVDSL,
our DSEL aiming to implement various lowest-order
methods (Finite-Volume, Mimetic Finite Difference, Mixed
Hybrid Finite Volume, etc.) for diffusive problems on
general meshes. In [4] we have presented technical details
on how this language has been designed with the Boost
Proto library. In this paper, we focus on the capability of
the language combined to runtime system tools like
Heterogeneous Abstract RunTime System (HARTS) [5],
to handle seamlessly new heterogeneous architectures with
multi-core processors enhanced by General Purpose com-
puting on Graphics Processing Units (GP-GPU). We pre-
sent the performance results of various implementations
of different academic problems on different kinds of hetero-
geneous hardware architecture.

In Section 1, we briefly present the mathematical frame-
work, our DSEL relies upon. We present the C++ concepts
used to define the back end and the front end of the language
and explain how to parse expressions representing bilinear
and linear forms. We show how our framework enables to
generate useful algorithms to solve the discrete problems.
In Section 2, we present how by introducing HARTS, a
runtime layer to handle new heterogeneous hardware
architecture, we have improved the generated algorithms
to take advantage of multi-core architectures.

In Section 4, we present some performance results on
various academic test cases that we have implemented with
our framework.

1 ARCFVDSL, A DSEL IN C++ TO SOLVE DIFFUSIVE
PROBLEMS WITH LOWEST-ORDER METHODS

As for FE/DG (Finite Element/Discontinuous Galerkin)
methods, a unified mathematical framework which allows
a unified description of a large family of lowest-order
methods has recently emerged [6]. The key idea is to refor-
mulate the method at hand as a (Petrov)-Galerkin scheme
based on a possibly incomplete, broken affine space.
This is done by introducing a piecewise constant gradient
reconstruction, which is used to recover a piecewise affine
function starting from cell (and possibly face) centered
unknowns.

For example, considering the following heterogeneous
diffusion model problem:

�r � jruð Þ ¼ f inX; u ¼ 0 on oX ð1Þ

with source term f 2 L2(X), j piecewise constant.

The continuous weak formulation reads: find u 2 H1
0ðXÞ

such that

a u; vð Þ ¼ b vð Þ 8v 2 H1
0 Xð Þ

with

a u; vð Þ≝ R
X jru � rv

bðvÞ≝ R
X fv

In this framework, for a given partition Th of X, a
specific lowest-order method is defined by (i) selecting a trial
function space UhðThÞ and a test function space VhðThÞ,
(ii) defining for all (uh, vh) 2 Uh 9 Vh a bilinear form
ah(uh, vh) and a linear form bh(vh). Solving the discrete
problem consists then in finding uh 2 Uh such that:

ah uh; vhð Þ ¼ bh vhð Þ 8vh 2 Vh

The definition of a discrete function space Uh is based on
four main ingredients:
– Th the mesh representing X,Sh a submesh ofTh where

8S 2 Sh; 9TS 2 Th; S � TS ;
– Vh the space of vector of degrees of freedom with compo-

nents indexed by the mesh entities (cells, faces or nodes);
– Gh a linear gradient operator that defines for each vector

vh 2 Vh a constant gradient on each element of Sh; and
– rh the broken gradient operator.

Using the above ingredients, we can define for all
vh 2 Vh a piecewise affine function vh 2 Uh � P1

dðShÞ
such that: 8S 2 Sh; S � TS ; TS 2 Th; 8x 2 S,

vh xð ÞjS ¼ vTS þGh vhð ÞjS � x� xTSð Þ ð2Þ

Usually three kinds of submesh Sh are considered: Th

the mesh itself, Ph the submesh with pyramidal subcells
built regarding the faces of Th and Nh the submesh with
subcells built regarding the nodes of Th. We denote Th

the space of degrees of freedom with components indexed
by cells and Fh the space of degrees of freedom with compo-
nents indexed only by faces. Usually the following choices
are considered: Vh ¼ Th or Vh ¼ Th � Fh.

With this framework, the model problem (1) can be
solved with various methods:
– the cell centered Galerkin (ccG) method and the

G-method with cell unknowns only;
– the hybrid finite volume method with both cell and

face unknowns that recover the Mimetic Finite Differ-
ence (MFD) and Mixed Hybrid Finite Volume (MHFV)
family.
For example, the hybrid finite volume method recovers

the SUSHI scheme [7-10]. The discrete space with hybrid
unknowns is then obtained with: (i) Sh ¼ Ph,

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12 Page 3 of 11

(ii) Vh ¼ Th � Fh, (iii) Gh ¼ Ghyb
h with Ghyb

h such that, for
all ðvTh ; vFh Þ 2 Th � Fh, all T 2 Th and all F 2 Fr,

Ghyb
h ðvTh ; vFh ÞjPT ;F

¼ Ggreen
h ðvTh ; vFh ÞjT
þ rhðvTh ; vFh ÞjPT ;F

nT ;F ð3Þ
where the linear residual operator rh : Th � Fh ! P0

dðPhÞ is
defined as follows: for all T 2 Th and all F 2 FT ,

rhðvTh ; vFh ÞjPT;F
¼ d

1
2

dT ;F
vF � vT �Ggreen

h vTh ; vFh
� �jT�

� ðxF � xT Þ�
This method with hybrid unknowns reads:

Find uh 2 V hyb
h s:t: asushih uh; vhð Þ ¼

Z
X
fvh for all vh 2 V hyb

h

with

asushih uh; vhð Þ≝
Z
X
jrhuh � rhvh ð4Þ

and rh broken gradient on Ph.
This unified framework allows the design of a high level

language close to the mathematical notation. Such a
language enables to express the variational discretized
formulation of PDE problem with various methods, each
of them defining specific bilinear and linear forms.
Algorithms are then generated to solve the problems, evalu-
ating the forms representing the discrete problem. The front
end of the language is based on concepts (mesh, function
space, test trial functions, differential operators) close to
their mathematical counterpart. They are linked to low level
structures, the back end of the language, representing
meshes, scalar arrays indexed by mesh entities, algebraic
objects (vectors, matrices, linear operators). For theses struc-
tures we use frameworks like Arcane [6] or ALIEN a frame-
work to handle various linear solver packages. Linear and
bilinear forms are represented by expressions built with
the terminals of the language linked with unary, binary
operators (+, �, *, /, dot(.,.)) and with free functions like
grad (.), div (.), integrate (.,.). The purpose of theses expres-
sions is (i) to express the variational discretized formulation
of the problem, (ii) to generate algorithms which consist in
evaluating these expressions to build global linear systems
which are solved to find the solution of the problem. The
generative mechanism of our framework is based on the
Boost Proto framework [2] and is described in detail [4].

For our diffusion model problem (1), such a DSEL will
for instance achieve to express the variational discretized
formulation (9) with the programming counterpart shown
in Listing 1.

Listing 1
Diffusion problem implementation

MeshType Th;

Real K;

auto Vh = newSUSHISpace(Th);

auto u = Vh�> trial(‘‘U’’);

auto v = Vh�> test(‘‘V’’);

BilinearForm a =

integrate(allCells(Th), dot (K*grad (u),

grad (v)));

LinearForm b =

integrate(allCells(Th), f*v);

// Bilinear and linear form evaluation
Matrix M(/*. . .*/);

Vector rhs(/*. . .*/);

Vector sol(/*. . .*/);

LinearEvalContext ctx(M, rhs);

fvdsl :: eval(a, ctx);

fvdsl :: eval(b, ctx);

// Linear system resolution
Alien :: solve(M, rhs, sol);

The bilinear form asushih defined by (9) has the program-
ming counterpart given in Listing 1 and the corresponding
expression tree is detailed in Figure 1.

Listing 2 is a generic assembly algorithm consisting in
iterating on each entity of the mesh group and in
evaluating the test and trial expression on each entity. For
such evaluation, different kinds of context objects are
defined. The structure EvalContext<ItemT> enables to com-
pute the linear combination objects, some generalized sten-
cils or local vectors indexed by DOF. These objects are
returned by the evaluation of test or trial expressions. When
they are associated to a binary operator tag, they lead to a
bilinear contribution, a local matrix contributing to the
global linear system.

Listing 2
Integration assembly algorithm

template<typename ItemT,

typename TestExprT,

typename TrialExprT,

typename tag_op,

typename BilinearContextT>

void integrate(Mesh const& mesh,

GroupT<ItemT> const& group,

TrialExprT const& trial,

TestExprT const& test,

BilinearContextT& ctx)
{

static const Context :: ePhaseType phase =

BilinearContextT :: phase_type;

Page 4 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12

auto matrix = ctx.getMatrix();

for(auto cell : group)

{

//! eval context on mesh item
EvalContext<Item> ctx(cell);

//! trial linear combination
auto lu = proto :: eval(trial, ctx);

//! test linear combination
auto lv = proto :: eval(test, ctx));

BilinearContribution<tag_op>

uv(lu, lv);

assemble<phase>(matrix,

measure(mesh, cell),

uv);

}

}

In the same way the evaluation of a linear form expression
with a linear context leads to the construction of the right
hand side of a global linear system.

Once the global linear system is built, it can be solved
with a linear system solver provided by the linear algebra
layer ALIEN.

2 HARTS, AN ABSTRACT OBJECT ORIENTED RUNTIME
SYSTEM LAYER FOR HETEROGENEOUS ARCHITECTURE

In the previous section we have presented a generative
framework, based on a DSEL that enables to describe
numerical methods at a high level, and to generate C++
codes with back-end objects with a generative mechanism.
In this section, we show how we can introduce various kind
of parallelism in the generated codes with the runtime sys-
tem layer HARTS presented in details [5]. This layer is
aimed to handle, in a unified way, different levels of paral-
lelism. As in most existing runtime system frameworks, it
is based on: (i) an abstract architecture model that enables
us to describe in a unified way most of present and future
heterogeneous architectures with static and runtime informa-
tion on the memory, network and computational units; (ii) an
unified parallel programming model based on tasks that
enables us to implement parallel algorithms for different
architectures; (iii) an abstract data management model to
describe the processed data, its placement in each memory
level and the various ways to access it from the each compu-
tation unit. The use of HARTS as illustrated in Figure 2 has
several advantages:
1. it enables to clearly separate the implementation of the

numerical layer from the implementation of the runtime
system layer;

2. it enables to take into account the evolution of hardware
architecture with new extensions and new concepts
implementation, limiting in that way the impact on the
numerical layer based on the DSEL generative layer.
Most of the algorithms that could be parallelized rely on

this layer that bridges the gap between our DSEL and the
low level Application Programming Interface (API) used
to execute algorithms on various computational units.
For example, this layer has been used:
1. to create an abstract API to manipulate algebraic objects

like matrices and vectors with standard Basic Linear
Algebra Subprograms (BLAS) 1 and 2 operations;

2. to enhance the assembly part of linear systems, while
linear and bilinear expressions are evaluated on collec-
tions of mesh items.
Numerical low level algorithms can often been described

as sequences of matrices and vectors algebraic operations.

expr<tag :: integrate >

allCells (Th) expr<tag :: dot>

expr<tag :: mult>

K expr<tag :: grad>

uh

expr<tag :: grad>

vh

Figure 1

Expression tree for the bilinear form defined in Listing 1.
Expressions are in light gray, language terminals in dark gray.

Figure 2

Layer architecture.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12 Page 5 of 11

Such sequences with a great number of floating points
operations can be expensive, and the way to optimize them
are diverse with respect to the hardware specificities. It is
important for the generative framework to have a high level
unified way to express such sequences independently of low
level optimisations. We have for this purpose defined an
abstract algebraic API detailed in Listing 3 aiming: (i) to
hide hardware specificities, (ii) to manage memory alloca-
tion and locality, (iii) to manage parallel loops, (iv) to pro-
vide most BLAS 1 and 2 functionalities, (v) to provide
tools to split vectors and manage vector views and range
iterators.

class AlgebraKernel

{

void allocate(Vector & v,

std :: size_t alloc_size);

void assign(Vector & v, LambdaT op);

void axpy(ValueT const &a,

Vector const& x, Vector const&

y);

doubledot(Vectorconst&x,Vectorconst&y);

void mult(Matrix const& A,

Vector const& x,

Vector const& y);

void exec(Precond const& P,

Vector const& x,

Vector const& y);

};

We have implemented this API with HARTS and with
various other runtime system layers (XKaapi, StarSS, . . .).
With this API we can compare the following classical
BiCGStab sequence to its programming counterpart in
Listing 3.

Algorithm 1: BiCGStab Algorithm

Matrix A;
Vector b, p, pp, r, v
Scalar a;
do

pp = inv(P).p;
v = A.p;
r += v;
a = dot(p,r);
if(a==0) break;
. . .;

while(|r|<tol*|b|);

Listing 3
BiCGStab sequence

AlgebraKernelType alg;

Matrix A; Vector p, pp, r, v;

double alpha;

// Declare the algorithm sequence
SequenceType seq = alg.newSequence();

alg.exec(precond, p, pp, seq);

alg.mult(A, pp, v, seq);

alg.axpy(1., r, v, seq);

alg.dot(p, r, alpha, seq);

alg.assertNull(alpha, seq);

while(!iter.stop())

{

// execute the sequence
alg.process(seq);

}

We have seen in Section 1 that the evaluation of bilinear
and linear expressions with linear context objects leads to
algorithms as in Listing 2. These algorithms consist in
iterating on mesh entities, in computing local matrices and
vectors which are assembled in a global matrix and right
hand side vector. With new hardware architectures, such
algorithms can be parallelized in a number of different ways
as long as the concurrency on global data like the global
linear system is managed. To handle the variety of low
level systems, HARTS provides functionalities like
HARTS::parallelForeach() (see Listing 3) to iterate on
collection of mesh entities (nodes, faces, cells) and to apply
lambda functions in parallel.

ItemGroupT<Item> items = . . .;

parallelForeach(

items,

[&](ItemVectorView<Item> const& items)

{

// Lambda function
std :: for_each(items.begin(),

items.end(),

[](Item const item)

{

. . .

});

});

Using graph coloring techniques, we can manage
concurrency on shared data without locks. For that we
partition the collections of mesh entities in sub collections
of mesh entities with disjoined connectivities, then we apply
on each sub collection any lambda functions, avoiding in
that way any concurrent access to shared data (Shared
degrees of freedom during the assembly phase). Listing 4
shows how the generic assembly algorithm of Listing 2
can be written delegating the parallelism to the runtime
system layer.

Page 6 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12

Listing 4
Parallel integration assembly algorithm

template<typename ItemT,

typename TestExprT,

typename TrialExprT,

typename tag_op,

typename BilinearContextT>

void integrate(Mesh const& mesh,

GroupT<ItemT> const& group,

TrialExprT const& trial,

TestExprT const& test,

BilinearContextT& ctx)

{

static const Context :: ePhaseType phase =

BilinearContextT :: phase_type;

auto matrix = ctx.getMatrix();

ColorPartitioner<ItemT, ItemT> part

(mesh, group);

for(std :: size_t color = 0;

part.getNbColor();

++color)

{

Harts :: parallelForeach(

part.getPartition(color),

[&](ItemVectorView<ItemT> const& items)

{

for(auto cell : items)

{

//! eval context on mesh item

EvalContext<Item> ctx(cell);

//! trial linear combination

auto lu = proto :: eval(trial, ctx);

//! test linear combination

auto lv = proto :: eval(test, ctx));

//! bilinear contribution

BilinearContribution<tag_op>

uv (lu, lv);

//! matrix assemble phase

assemble<phase>(matrix,

measure(mesh,

cell), uv);

}

});

}

}

3 EXAMPLE OF APPLICATIONS

In this section we present first three academic model
problems, the heterogeneous diffusive problem, a linear
elasticity problem and the Stokes problem. For each of them,
we compare different mathematical formulations to their
programming counterpart.

3.1 Diffusive Problem

The countinuous strong formulation reads:

r � ð�jruÞ ¼ f

The countinuous variational formulation reads:
Find u 2 H1

0ðXÞ such that

aðu; vÞ ¼ bðvÞ 8v 2 H1
0ðXÞ

with

aðu; vÞ≝
Z
X
jru � rv

bðvÞ≝
Z
X
fv

This problem can be solved with various lowest-order
methods, the hybrid method presented in Section 1, the
G-method [11] or the ccG method [12, 13].

In the G-method
The trial space for is obtained with (i) Sh ¼ Ph,

(ii) Vh ¼ Th, and (iii) Gh ¼ Gg
h a gradient operator, piece-

wise constant on the elements S 2 Ph, base on the L
construction, detailed in [11].

The method reads then:

Find uh 2 Vg
h s:t: agh uh; vhð Þ ¼

Z
X
fvh for all vh 2 P0

dðThÞ

where aghðuh; vhÞ≝ RF2Fh

R
F fjrhvhg � nf svht with.

We can compare to the following programming counter-
part:

MeshType Th(/*. . .*/);

VariableCellReal 393 K(/*. . .*/);

VariableCellReal f(/*. . .*/);

// FORMS DECLARATION
auto Uh = newGSpace(Th);

auto u = Uh�> trial();

auto v = Uh�> test();

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12 Page 7 of 11

Bilinear Form ah_g =

integrate(

internalFaces(Th),

dot(N(Th), avr(K*grad(u)))*jump(v)))

+ integrate(

boundaryFaces(Th),

dot(N(Th), avr(K*grad(u)))*jump(v));

LinearForm bh_g =

integrate(cells(Th), �f*v);

// FORMS EVALUATION
/*. . .*/

In the ccG method
We introduce the linear gradient operator

Ggreen
h :Th � Fh ! ½P0

d Thð Þ�d such that, for all
vT; vF
� � 2 Th � Fh and all T 2 Th,

Ggreen
h ðvT; vFÞjT ¼ 1

jT jd
X
F2FT

jFjd�1ðvF � vT ÞnT ;F ð5Þ

The discrete space for the ccG method is obtained with: (i)
Sh ¼ Th, (ii)Vh ¼ Th, and (iii)Gh ¼ Gccg

h withGccg
h such

that

8vh 2 Vh; G
ccg
h vhð Þ ¼ G

green
h vh;T

g
h vhð Þ� � ð6Þ

where Tg
h is a linear trace reconstruction operator on the

faces of Th.
Let for all ðuh; vhÞ 2 V ccg

h � V ccg
h ,

accgh uh; vhð Þ≝
Z
X
jrhuh � rhvh �

X
F2Fh

Z
F
½jrhuh � nFsvht

þ suht jrvh � nF � þ
X
F2Fh

g
cF
hF

Z
F
suhtsvht ð7Þ

The method reads:

Find uh 2 V ccg
h accgh uh; vhð Þ ¼

Z
X
fvh for all vh 2 V ccg

h ð8Þ

We can compare to the following programming counter-
part:

MeshType Th(/*. . .*/);

VariableCellReal 393 K(/*. . .*/);

VariableCellReal f(/*. . .*/);

auto Uh = newCCGSpace(Th);

auto u = Uh�> trial();

auto v = Uh�> test();

// FORMS DECLARATION
BilinearForm ah_ccg =

integrate(all Cells(Th),

dot(K*grad(u), grad(v)))

+ integrate(allFaces(Th),

�K*jump(u)*dot(N(Th), avr(grad(v)))

�K*dot(N(Th), avr(grad(u)))*jump(v))

+ integrate(internalFaces(Th),

eta /H(Th)*jump(u)*jump(v));

LinearForm bh_ccg =

integrate(cells(Th), �f*v);

// FORMS EVALUATION
/*. . .*/

3.2 Linear Elasticity

The countinuous strong formulation reads:

�r � rðuÞ ¼ f

where u : X ! Rd is the vector-valued displacement field.
The countinuous variational formulation reads:
Find u 2 ½H1

0ðXÞ�d such that

aðu; vÞ ¼ bðvÞ 8v 2 ½H1
0ðXÞ�d

with

�ðvÞ≝ 1

2
ðrvþrvT Þ

rðvÞ≝ 2l�ðvÞ þ kr � vId
aðu; vÞ≝

Z
X
rðuÞ : �ðvÞ

bðvÞ≝
Z
X
f � v

The discrete variational hybrid method reads [14]:

Find uh2½V hyb
h �d s:t: asushih ðuh; vhÞ¼

Z
X
fvh for all vh 2 ½V hyb

h �d

with

asushih uh; vhð Þ≝
Z
X
�h uhð Þ : �h vhð Þ þ krh � uhð Þrh � vhð Þ

ð9Þ

We can compare to the following programming counter-
part:

MeshType Th(/*. . .*/);

auto Uh = newHybridSpace(Th);

auto u = Uh�> trialArray(‘‘U’’, Th :: dim);

auto v = Uh�> testArray(‘‘V’’, Th :: dim);

// BILINEAR AND LINEAR FORMS
BilinearForm ah =

Page 8 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12

integrate(allCells(Th),

m_2mu*ddot(eps(u), eps(v)))

+ integrate(allCells(Th),

m_lambda*(div(u)*div(v)));

LinearForm bh =

integrate(allCells(Th),

dot(m_f, v));

// Boundary conditions DIRICHLET + NEUNMANN
ah +=

on(boundary(Th, ‘‘Dirichlet’’,

trace(u) = g);

ah +=

integrate(boundary(Th, ‘‘Neunmann’’),

alpha*dot(SigmaN(u), v));

bh +=

integrate(boundary(Th, ‘‘Neunmann’’),

alpha*dot(t, v)););

3.3 Stokes Problem

The countinuous strong formulation reads:

��uþrp ¼ f andr � u ¼ 0

where u :X ! Rd is the vector-valued velocity field,
p :X ! R is the pressure, and f :X ! Rd is the forcing
term.

The countinuous variational formulation reads:

a u; pð Þ; v; qð Þð Þ≝ R
X ru :rvþ R

X pr � vþ R
X rq � u

bððv; qÞÞ≝ R
X f � v

Following [15], we consider a discretization based on the
spaces

Uh ≝ ½V ccg
h �d; Ph ≝

P0
d Thð Þ
R

ð10Þ

The momentum diffusion is discretized by the bilinear
form ah 2 LðUh � Uh;RÞ such that

ah uh; vhð Þ ¼
Xd
i¼1

asiph uh;i; vh;i
� � ð11Þ

where, for all wh 2 Uh, the Cartesian components of wh are
denoted by (wh,i)i2{1,. . .,d}. The velocity-pressure coupling
hinges on the bilinear form bh 2 LðUh � Ph;R):

bhðvh; qhÞ ¼ �
Z
X
ðrh � vhÞqh þ

X
F2Fh

Z
F
svht � nFfqhg

ð12Þ

The discrete divergence operator associated to bh is not
surjective with choice of spaces (10). The stability of the
velocity-pressure coupling can be recovered by penalizing
pressure jumps via the bilinear form sh 2 LðPh � Ph;RÞ
such that

sh ph; qhð Þ ¼
X
F2Fi

h

Z
F
hFsphtsqht ð13Þ

The discrete problem reads: Find (uh, ph) 2 Uh 9 Ph such
that, for all (vh, qh) 2 Uh 9 Ph,

ah uh; vhð Þ þ bh vh; phð Þ � bh uh; qhð Þ þ sh ph; qhð Þ ¼
Z
X
f � vh
ð14Þ

We can compare to the following programming counter-
part:

MeshType Th;

auto Uh = newCCGSpace(Th);

auto Ph = newP0Space(Th);

auto u = Uh�> trialArray(Th :: dim);

auto v = Uh�> testArray(Th :: dim);

auto p = Ph�> trial();

auto q = Ph�> test();

FVDomain :: algo :: Range<1> _i(dim);

BilinearForm ah =

integrate(allCells(Th),

sum(_i)[dot(grad(u(_i)), grad(v(_i))]))

+ integrate(Internal <Face > :: items(Th),

sum(_i)[

�dot(N(Th),avg(grad(u(_i))))*jump(v(_i))

�jump(u(_i))*dot(N(), avg(grad(v(_i))))

+eta/H(Th)*jump(u(_i))*jump(v(_i))

]);

BilinearForm bh =

integrate(allCells(Th),

�id(p)*div(v))

+ integrate(allFaces(Th),

avg(p)*dot(fn, jump(v)));

BilinearForm bth =

integrate(allCells(Th),

div(u)*id(q))

+ integrate(allFaces(Th),

�dot(N(Th), jump(u))*avg(q));

BilinearForm sh =

integrate(internalFaces(Th),

H(Th)*jump(p)*jump(q));

LinearForm fh =

integrate(allCells(Th),

sum(_i)[f(_i)*v(_i)]);

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12 Page 9 of 11

4 PERFORMANCE RESULTS

In this section, we present some performance results
obtained on the heterogeneous diffusive problem. We focus
on the two most expensive parts, the global linear system
assembly and the linear system resolution. In Figure 3, we
can notice that, even if the linear system assembly is not
trivial to parallelize due to concurrent access matrix and vec-
tor entries, we can obtain not so bad accelerations. For the
linear system resolution, our generic layer ALIEN gives us
access to various linear solver packages that can perform
on multi-core nodes or on GP-GPU. In Figure 4, we see
the solver performance up to 16 cores on multi-cores archi-
tecture. We can also see how we can even take advantage of

the power of GP-GPU with the dedicated solver package for
GP-GPU.

CONCLUSION AND PERSPECTIVE

We have presented ArcFVDSL, a DSEL developed on top of
the Arcane framework. This high level language enables to
implement various lowest-order methods for diffusive
problems on general meshes. It hides low level optimisations
for new heterogeneous architecture. We have shown how
this generative framework combined to the HARTS layer
can generate efficient codes and allows to handle seamlessly
architectures with multi-core processors enhanced by
GP-GPU. This combination turns to be a good solution to
provide high level tools to implement new complex numer-
ical methods preserving the performance of the generated
code on heterogeneous hardware architectures. In the future,
we plan to introduce at the numerical level, new features in
the language to handle for example non linear models. At the
hardware level, we plan to introduce new optimisations
through the HARTS layer to take advantage on new many
integrated cores architectures using for instance Intel Xeon
Phi processors.

REFERENCES

1 Grospellier G., Lelandais B. (2009) The arcane development
framework, Proc. of the 8th workshop on Parallel/High-
Performance Object-Oriented Scientific Computing, POOSC
‘09, ACM, New York, NY, USA, pp. 4:1-4:11, ISBN: 978-1-
60558-547-5.

1 2 4 8 12 14 16

0.5

1

1.5

2

2.5

3

Nb cores

T
im

e
(s

ec
on

ds
)

assembly time

1 2 4 8 12 14 16

1

2

3

4

Nb cores

A
cc

el
er

at
io

n

acceleration

Figure 3

Linear system assembly performance.

1 2 4 8 10 12 14 16 GPU

5

10

15

Nb cores

T
im

e
(s

ec
on

ds
)

multi-cores or 1 core 1 GPU

Figure 4

Linear solver performance.

Page 10 of 11 Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12

2 Niebler E. (2011) Boost::proto documentation. Available at
http://www.boost.org/doc/libs/1_47_0/doc/html/proto.html

3 Di Pietro D.A., Gratien J.-M., Prud’homme C. (2013) A
domain specific embedded language in C++ for lowest-order
methods for diffusive problem on general meshes, BIT Numer.
Math. 53, 111-152.

4 Gratien J.-M. (2012) Implementing a domain specific
embedded language for lowest-order variational methods with
Boost Proto, Available at http://hal.archives-ouvertes.fr/
hal-00788281.

5 Gratien J.-M. (2013) An abstract object oriented runtime
system for heterogeneous parallel architecture, Available at
https://hal-ifp.archives-ouvertes.fr/hal-00788293. Working
paper or preprint.

6 Di Pietro D.A., Gratien J.-M. (2011) Lowest order methods for
diffusive problems on general meshes: a unified approach to
definition and implementation, FVCA6 Proc., Available at
http://hal.archives-ouvertes.fr/hal-00562500/fr/.

7 Brezzi F., Lipnikov K., Shashkov M. (2005) Convergence of
mimetic finite difference methods for diffusion problems on
polyhedral meshes, SIAM J. Numer. Anal. 43, 1872–1896.

8 Brezzi F., Lipnikov K., Simoncini V. (2005) A family of
mimetic finite difference methods on polygonal and polyhedral
meshes, Math. Models Methods Appl. Sci. 15, 1533-1553.

9 Droniou J., Eymard R., Gallouet T., Herbin R. (2010) A unified
approach to mimetic finite difference, hybrid finite volume and

mixed finite volume methods,Math. Models Methods Appl. Sci.
20, 2, 265-295.

10 Eymard R., Gallouet Th., Herbin R. (2010) Discretization of
heterogeneous and anisotropic diffusion problems on general
nonconforming meshes SUSHI: a scheme using stabilization
and hybrid interfaces, IMA J. Numer. Anal. 30, 1009-1043.

11 Agélas L., Di Pietro D.A., Droniou J. (2010) The G method for
heterogeneous anisotropic diffusion on general meshes, M2AN
Math. Model. Numer. Anal. 44, 4, 597-625.

12 Di Pietro D.A. (2010) Cell-centered Galerkin methods, C. R.
Math. Acad. Sci. Paris 348, 31-34.

13 Di Pietro D.A. (2011) A compact cell-centered Galerkin
method with subgrid stabilization, C. R. Acad. Sci. Paris, Ser.
I. 348, 1-2, 93-98.

14 Lemaire S. (2013) Nonconforming discretizations of a
poromechanical model on general meshes. PhD Report,
Available at http://www.theses.fr/2013PEST1168/document

15 Di Pietro D.A. (2012) Cell centered Galerkin methods for
diffusive problems, M2AN Math. Model. Numer. Anal. 46, 6,
111-144.

Manuscript submitted in December 2015

Manuscript accepted in February 2017

Published online in April 2017

Cite this article as: J.-M. Gratien (2017). ArcFVDSL, a DSEL Combined to HARTS, a Runtime System Layer to Implement
Efficient Numerical Methods to Solve Diffusive Problems on New Heterogeneous Hardware Architecture, Oil Gas Sci. Technol
72, 12.

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles (2017) 72, 12 Page 11 of 11

http://www.boost.org/doc/libs/1_47_0/doc/html/proto.html
http://hal.archives-ouvertes.fr/hal-00788281
http://hal.archives-ouvertes.fr/hal-00788281
https://hal-ifp.archives-ouvertes.fr/hal-00788293
http://hal.archives-ouvertes.fr/hal-00562500/fr/
http://www.theses.fr/2013PEST1168/document

	INTRODUCTION
	ArcFVDSL, A DSEL IN C++ to SOLVE DIFFUSIVE PROBLEMS WITH LOWEST-ORDER METHODS
	HARTS, AN ABSTRACT OBJECT ORIENTED RUNTIME SYSTEM LAYER FOR HETEROGENEOUS ARCHITECTURE
	EXAMPLE OF APPLICATIONS
	Diffusive Problem
	Linear Elasticity
	Stokes Problem

	PERFORMANCE RESULTS
	CONCLUSION AND PERSPECTIVE
	References

