Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 3, May–June 2016
Article Number 31
Number of page(s) 17
Published online 14 April 2015
  • Ahmed T. (2010) Reservoir Engineering Handbook, 4th edn, Gulf Professional Publishing. [Google Scholar]
  • Bourbiaux B., Fourno A., Nguyen Q.L., Norrant F., Robin M., Rosenberg E., Argillier J.F. (2014) Experimental and Numerical Assessment of Chemical EOR in Oil-wet Naturally-Fractured Reservoirs, SPE Improved Oil Recovery Symposium, Tulsa, Oklahoma, USA, April 12-16, SPE Paper 169140. [Google Scholar]
  • Ramirez B., Kazemi H., Al-Kobaisi M., Ozkan E., Atan S. (2009) A Critical Review for Proper Use of Water/Oil/Gas Transfer Functions in Dual-Porosity Naturally Fractured Reservoirs: Part I, SPE Res. Eval. Eng. 12, 2, 200–210. [Google Scholar]
  • Gilman J.R. (2003) Practical aspects of simulation of fractured reservoirs, International forum on reservoir simulation, Buhl, Baden-Baden, Germany. [Google Scholar]
  • Saidi A.M. (1983) Simulation of Naturally fractured Reservoirs, SPE Reservoir Simulation Symposium, San Francisco, CA, 15-18 Nov, SPE 12270. [Google Scholar]
  • Fung L.S.K. (1991) Simulation of Block-to-Block Processes in Naturally fractured Reservoirs, SPE Res. Eval. Eng. 6, 4, 477–484. [Google Scholar]
  • Uleberg K., Kleppe J. (1996) Dual Porosity, Dual Permeability Formulation for Fractured Reservoir Simulation, Norwegian University of Science and Technology, Trondheim RUTH Seminar, Stavanger. [Google Scholar]
  • Kazemi H., Gilman J.R. (1993) Multiphase Flow in Fractured Petroleum Reservoirs, in Flow and Contaminant Transport in Fractured Rock, Bear J., Tsang C.F., de Marsily G. (eds), San Diego, California, Academic Press, pp. 267–323. [CrossRef] [Google Scholar]
  • Al-Kandari H.A., Kazemi H., Van Kirk C.W. (2002) Gas Injection Enhanced Oil Recovery in High Relief Naturally Fractured Reservoirs, Kuwait University Technical Conference and Exhibition, November. [Google Scholar]
  • Liu H., Di Donato G., Blunt M.J. (2006) General Transfer Functions for Multiphase Flow, SPE Annual Technical Conference and Exhibition, San Antonio, TX, 24-27 Sept., Paper SPE 102542. [Google Scholar]
  • Saboorian-Jooybari H., Ashoori S., Mowazi G. (2012) Development of an Analytical Time-Dependent Matrix/Fracture Shape Factor for Countercurrent Imbibition in Simulation of Fractured Reservoirs, Transp. Porous Media 92, 3, 687–708. [CrossRef] [Google Scholar]
  • Saboorian-Jooybari H., Khademi N. (2014) Traveling Wave Analysis of Cocurrent Imbibition in Porous Media, Journal of Porous Media 17, 3, 185–195. [CrossRef] [Google Scholar]
  • Barenblatt G.I., Zheltov I.P., Kochina I.N. (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks, PMM. Sov. Appl. Math. Mech. 24, 5, 852–864. [Google Scholar]
  • Warren J.E., Root P.J. (1963) The behavior of naturally fractured reservoirs, SPE J. 245–255. [Google Scholar]
  • Kazemi H. (1990) Naturally fractured reservoirs, 3rd International Forum on Reservoir Simulation, Baden, Austria. [Google Scholar]
  • Pruess K., Narasimhan T.N. (1985) A practical method for modeling fluid and heat flow in fractured porous media, SPE J. 25, 14–26. [CrossRef] [Google Scholar]
  • Stothoff S., Or D. (2000) A discrete-fracture boundary integral approach to simulating coupled energy and moisture transport in a fractured porous medium, in Dynamics of Fluids in Fractured Rocks, Concepts and Recent Advances, Faybishenko B., Witherspoon P.A., Benson S.M. (eds), AGU Geophysical Monograph 122, American Geophysical Union, Washington, DC, pp. 269–279. [Google Scholar]
  • Collins F. (1988) Evaluation of the improved dual-porosity model for the simulation of gravity effects in naturally fractured reservoirs, 39th Ann. Tech. Meeting of the Petroleum Society of Canadian Institute of Mining, Calgary, Canada, CIM paper No. 88-39-05. [Google Scholar]
  • Bourbiaux B. (2010) Fractured Reservoir Simulation: a Challenging and Rewarding Issue, Oil & Gas Science and Technology – Rev. IFP 65, 2, 227–238. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010) Simulation of Naturally Fractured Reservoirs State of the Art - Part 1 – Physical Mechanisms and Simulator Formulation, Oil & Gas Science and Technology – Rev. IFP 65, 2, 239–262. [CrossRef] [EDP Sciences] [Google Scholar]
  • Lemonnier P., Bourbiaux B. (2010) Simulation of Naturally Fractured Reservoirs. State of the Art - Part 2 – Matrix-Fracture Transfers and Typical Features of Numerical Studies, Oil & Gas Science and Technology – Rev. IFP 65, 2, 263–286. [CrossRef] [EDP Sciences] [Google Scholar]
  • Henn N., Quintard M., Bourbiaux B., Sakthikumar S. (2004) Modelling of Conductive Faults with a Multiscale Approach, Oil & Gas Science and Technology – Rev. IFP 59, 2, 197–214. [CrossRef] [EDP Sciences] [Google Scholar]
  • Johnson E.F., Bossler D.P., Naumann V.O. (1959) Calculation of relative permeability from displacement experiments, Trans. AIME 216, 370. [Google Scholar]
  • Saraf D.N., McCaffery F.G. (1982) Two- and Three-Phase Relative Permeabilities: a Review, Petroleum Recovery Institute Report #81-8, Calgary, Alberta, Canada. [Google Scholar]
  • Jones S.C., Roszelle W.O. (1978) Graphical techniques for determining relative permeability from displacement experiments, J. Pet. Technol. 5, 807. [Google Scholar]
  • Sarem A.M. (1959) Significance of water-oil relative permeability data calculated from displacement tests, Conference of Theory of Fluid Flow in Porous Media, University of Oklahoma, Norman, 189. [Google Scholar]
  • Archer J.S., Wong S.W. (1973) Use of a reservoir simulator to interpret laboratory waterflood data, SPE Journal 13, 343–347. [CrossRef] [Google Scholar]
  • Honarpour M., Koederitz L., Harvey H. (1986) Relative Permeability of Petroleum Reservoirs, Boca Raton, FL, CRC Press. [Google Scholar]
  • Honarpour M., Mahmood S.M. (1988) Relative-permeability measurements-an overview, Journal of Petroleum Technology 40, 963–966. [CrossRef] [Google Scholar]
  • Lomize G.M. (1951) Flow in Fractured Rocks (in Russian), Gosenergoizdat, Moscow 127 pp. [Google Scholar]
  • Snow D.T. (1965) Anisotropic permeability of fractured media, Water Resour. Res. 5, 6, 1273–1289. [Google Scholar]
  • Louis C.A. (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses, Rock Mech. Res. Rep. 10, Imperial College, London, 90 pp. [Google Scholar]
  • Bear J. (1972) Dynamics of Fluids in Porous Media, Elsevier, New York, p. 764. [Google Scholar]
  • Witherspoon P.A., Wang J.S.Y., Iwai K., Gale J.E. (1980) Validity of cubic law for fluid flow in deformable rock fracture, Water Resour. Res. 16, 6, 1016–1024. [Google Scholar]
  • Romm E.S. (1966) Fluid Flow in Fractured Rocks (in Russian), Nedra Publishing House, Moscow. [Google Scholar]
  • Van Golf-Racht T. (1982) Fundamentals of Fractured Reservoir Engineering, Elsevier Scientific, New York. [Google Scholar]
  • Thomas L.K., Dixon T.N., Pierson R.G. (1983) Fractured reservoir simulation, SPE J. 23, 1, 42–54. [CrossRef] [Google Scholar]
  • Gilman J.R., Kazemi H. (1983) Improvements in simulation of naturally fractured reservoirs, SPE J. 23, 4, 695–707. [Google Scholar]
  • Kazemi H., Gilman J.R. (1989) Multiphase flow in fractured petroleum reservoirs, Advanced Workshop on Heat and Mass Transport in Fractured Rocks, Lab. Nac. Eng. Civ. (LNEC), Lisbon, June. [Google Scholar]
  • Grant M.A. (1977) Permeability reduction factors at Wairakei, AIChE-ASME Heat Transfer Conference, Am. Inst. of Chem. Eng. and Am. Soc. of Mech. Eng., Salt Lake City, Utah. [Google Scholar]
  • Pruess K., Bodvarsson G.S., Stefansson V., Eliasson E.T. (1984) The Krafla geothermal field, Iceland, 4, History match and prediction of individual well performance, Water Resour. Res. 20, 11, 1561–1584. [CrossRef] [Google Scholar]
  • Merrill L.S. (1975) Two phase flow in fractures, PhD Thesis, University of Denver. [Google Scholar]
  • Pruess K., Tsang Y.W. (1990) On two-phase relative permeability and capillary pressure of rough-walled rock fractures, Water Resour. Res. 26, 9, 1915–1926. [CrossRef] [Google Scholar]
  • Rossen W.R., Kumar A.T.A. (1992) Single- and two-phase flow in natural fractures, 67th Annual Technical Conference of the Society of Petroleum Engineers, Washington, DC, 4-7 Oct.,SPE Paper 24195. [Google Scholar]
  • Persoff P.K., Pruess K., Myer L. (1991) Two-Phase Flow Visualization and Relative Permeability Measurement in Transparent Replicas of Rough-Walled Rock Fractures, 16th Workshop on Geothermal Reservoir Engineering, Stanford, California, 23-25 Jan. [Google Scholar]
  • Persoff P., Pruess K. (1995) Two-Phase Flow Visualization and Relative Permeability Measurement in Natural Rough-Walled Rock Fractures, Water Resources Research 31, 5, 1175–1186. [CrossRef] [Google Scholar]
  • Fourar M., Bories S., Lenormand R., Persoff P. (1993) Two-Phase Flow in Smooth and Rough Fractures: Measurement and Correlation by Porous-Medium and Pipe Flow Models, Water Resources Research 29, 11, 3699–3708. [CrossRef] [Google Scholar]
  • Fourar M., Bories S. (1995) Experimental Study of Air-Water Two-Phase Flow through a Fracture (Narrow Channel), Int. J. Multiphase Flow 21, 4, 621–637. [CrossRef] [Google Scholar]
  • Pan X., Wong R.C., Maini B.B. (1996) Steady State Two-Phase Flow in a Smooth Parallel Fracture, Presented at the 47th Annual Technical Meeting of the Petroleum Society in Calgary, Alberta, Canada, June 10-12. [Google Scholar]
  • Rangel-German E., Akin S., Castanier L. (1999) Multiphase-Flow Properties of Fractured Porous Media, SPE Western Regional Meeting, Anchorage, AK, SPE Paper 54591. [Google Scholar]
  • Pieters D.A., Graves R.M. (1994) Fracture Relative Permeability: Linear or Non-Linear Function of Saturation, SPE International Petroleum Conference & Exhibition of Mexico, Veracruz, Mexico, 10-13 Oct, SPE Paper 28701. [Google Scholar]
  • Horne R.H., Satik C., Mahiya G., Li K., Ambusso W., Tovar R., Wang C., Nassori H. (2000) Steam-Water Relative Permeability, World Geothermal Congress, Kyushu-Tohoku, Japan, 28 May - 10 June. [Google Scholar]
  • Diomampo G.P. (2001) Relative Permeability Through Fractures, Report SGP-TR-170 prepared under DOE contract No. DE-FG07-95ID13370, August. [Google Scholar]
  • Chen A. (2005) Liquid-Gas Relative Pemeabilities in Fractures: Effects of Flow Structures, Phase Transformation and Surface Roughness, PhD Thesis, Stanford University. [Google Scholar]
  • Corey A.T. (1954) The interrelationship between gas and oil relative permeabilities, Prod. Mon. 19, 38–41. [Google Scholar]
  • Fourar M., de Nancy E., Lenormand R. (1998) A Viscous Coupling Model for Relative Permeabilities in Fractures, SPE Annual Technical Conference and Exhibition, New Orleans, LA, USA, SPE Paper 49006. [Google Scholar]
  • Shad S., Gates I.D. (2010) Multiphase Flow in Fractures: Co-current and Counter-Current Flow in a Fracture, Journal of Canadian Petroleum Technology 49, 2, 48–55. [CrossRef] [Google Scholar]
  • Brown S.R., Scholz C.H. (1985) Broad Bandwidth Study of the Topography of Natural Rock Surfaces, J. Geophys. Res. 90, 12575–12582. [CrossRef] [Google Scholar]
  • Toledo P.G., Nvoy A.R., Davis H.T. (1990) Hydraulic Conductivity of Porous Media at Low Water Content, Soil Science of America J. 54, 3, 673. [CrossRef] [Google Scholar]
  • Streeter V.L., Wylie E.B., Bedford K.W. (1997) Fluid Mechanics, 9th edn, McGraw-Hill publishing company. [Google Scholar]
  • Pan X. (1999) Immiscible Two-Phase Flow in a Fracture, PhD Thesis, University of Calgary, Calgary, Alberta, Canada. [Google Scholar]
  • Dullien A.L. (1993) Physical interpretation of hydrodynamic coupling in a steady-state two phase flow, 13th Annual Hydrology Meeting of American Geophysical Union, Colorado State University, Fort Collins, Colorado, pp. 363–377. [Google Scholar]
  • Wang J.S.Y., Narasimhan T.N. (1985) Hydrologic Mechanisms Governing Fluid Flow in a Partially Saturated, Fractured, Porous Medium, Water Resource Research 21, 12, 1861–1874. [CrossRef] [Google Scholar]
  • Banward S.E., Gustafsson M., Laaksoharju E.L.T., Wallin B. (1994) Large Scale intrusion of shallow water into a vertical fracture zone in crystalline bedrock: Initial hydrochemical perturbation during tunnel construction at the Äspö Hard Rock Laboratory, southeastern Sweden, Water Resources Research 30, 6, 1747–1763. [CrossRef] [Google Scholar]
  • Folger P.F., Poeter E., Wanty R.B., Frishman D., Day W. (1996) Controls on 222Rn variations in a fractured crystalline rock aquifer evaluated using aquifer tests and geophysical logging, Groundwater 34, 2, 250–261. [CrossRef] [Google Scholar]
  • Himmelsbach T., Hbtzl H., Maloszewski P. (1998) Solute Transport Processes in a Highly Permeable Fault Zone of Lindau Fractured Rock Test Site (Germany), Groundwater 36, 5, 792–800. [CrossRef] [Google Scholar]
  • Kumar A.T.A., Majors P.D., Rossen W.R. (1997) Measurement of Aperture and Multiphase Flow in Fractures using NMR Imaging, SPE Formation Evaluation 12, 2, 101–108. [Google Scholar]
  • Schrauf T.W., Evans D.D. (1986) Laboratory Studies of Gas Flow through a Single Natural Fracture, Water Resources Research 22, 7, 1038–1050. [CrossRef] [Google Scholar]
  • Shapiro A.M., Nicholas J.R. (1989) Assessing the validity of the channel model of fracture aperture under field conditions, Water Resources Research 25, 5, 817–828. [CrossRef] [Google Scholar]
  • Novakowski K.S., Lapcevic P.A. (1994) Field measurement of radial solute transport in fractured rock, Water Resources Research 30, 1, 37–44. [CrossRef] [Google Scholar]
  • Hensel W. (1987) A Perspective Look at Fracture Porosity, 62nd Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, Dallas, TX, 27-30 Sept., SPE Paper 16806. [Google Scholar]
  • Weber K.J., Bakker M. (1981) Fracture and Vuggy Porosity, SPE Annual Technical Conference and Exhibition, 4-7 Oct., San Antonio, Texas, SPE Paper 10332 [Google Scholar]
  • Noroozi M.M., Moradi B., Bashiri G. (2010) Effects of Fracture Properties on Numerical Simulation of a Naturally Fractured Reservoir, Trinidad and Tobago Energy Resources Conference, Port of Spain, Trinidad, 27-30 June, Paper SPE 132838. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.