Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
Article Number 9
Number of page(s) 9
DOI https://doi.org/10.2516/ogst/2014038
Published online 22 January 2016
  • Adler P.M., Thovert J.F. (1993) Fractal Porous Media, Transport in Porous Media 13, 41–78. [CrossRef] [Google Scholar]
  • Adler P.M., Thovert J.F. (1999) Fractures and Fracture Networks, Kluwer, Dordrecht. [CrossRef] [Google Scholar]
  • Agrawal O.P. (2002) Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, Nonlinear Dynamics 29, 145–155. [Google Scholar]
  • Alexander S., Orbach R. (1982) Density of states on fractals: ‘fractons’, J. Phys. Lett. 43, L625–631. [Google Scholar]
  • Barker J.A. (1988) A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res. 24, 10, 1796–1804. [Google Scholar]
  • Ben-Avraham D., Havlin S. (2000) Diffusion and Reactions in Fractals and Disordered Systems, Cambridge, Massachusetts, Cambridge U Press. [Google Scholar]
  • Bernard S., Delay F., Porel G. (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers, J Hydrology 328, 647–658. [Google Scholar]
  • Butzer P.L., Westphal U. (2000) An introduction to fractional calculus, Hilfer R. (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, pp. 1–85. [CrossRef] [Google Scholar]
  • Camacho Velazquez R., Fuentes-Cruz G., Vásquez-Cruz M. (2008) Decline Curve Analysis of Fractured Reservoirs with Fractal Geometry, SPE Reservoir Evaluation & Engineering 11, 03, 606–619. [Google Scholar]
  • Carslaw H.S, Jaeger J.C. (1959) Conduction of Heat in Solids, 2nd ed., Oxford U. Press, New York. [Google Scholar]
  • Chang J., Yortsos Y.C. (1990) Pressure Transient Analysis of Fractal Reservoirs, SPE Formation Evaluation 5, 01, 31–38. [Google Scholar]
  • Chen T., Noirot J.-C., Khandelwal A., Xue Guangri, Barton M.D., Alpak F.O. (2012) Estimating Stratigraphic Parameters from Well Test Data in Turbidite Reservoirs, SPE Annual Technical Conference and Exhibition, 8-10 Oct, San Antonio TX, USA, SPE Paper 159090. [Google Scholar]
  • Compte A. (1996) Phys. Rev. E 53, 4, 4191–4193. [CrossRef] [Google Scholar]
  • Crump K.S. (1976) Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation, Journal ACM 23, 1, 89–96. [CrossRef] [Google Scholar]
  • de Swaan A. (1986) Influence of Shape and Skin of Matrix-Rock Blocks on Pressure Transients in Fractured Reservoirs, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, 5-8 Oct, New Orleans, LA, SPE Paper 15637. [Google Scholar]
  • de Swaan A. (1998) Transient Fluid Flow through Composite Geometries, SPE International Petroleum Conference and Exhibition of Mexico, 3-5 March, Villahermosa Mexico, SPE Paper 36777. [Google Scholar]
  • de Swaan A. (2000) Analysis of Well Tests in Multiple Fractured Reservoirs - Field Case Applications, SPE International Petroleum Conference and Exhibition, 1-3 Feb, Villahermosa, Mexico, SPE Paper 59015. [Google Scholar]
  • de Swaan A., Camacho-Velasquez R., Vasquez-Cruz M. (2012) Interference Tests Analysis in Fractured Formations with a Time-Fractional Equation, SPE Latin American and Caribbean Petroleum Engineering Conference, 16-18 April, Mexico-City, Mexico, SPE Paper 153615-PP. [Google Scholar]
  • Essam J.W., Bhatti F.M. (1985) Series expansion evidence supporting the Alexander-Orbach conjecture in two dimensions, J. Phys. A 18, 3577–3584. [CrossRef] [MathSciNet] [Google Scholar]
  • Gorenflo R., Mainardi F. (1997) Fractional calculus: integral and differential equations of fractional order, Carpinteri A., Mainardi F. (eds), Fractals and Fractional Calculus in Continuum Mechanic, Springer Verlag, Vienna, pp. 223–276. [Google Scholar]
  • Klemm A., Müller H.P., Kimmich R. (1999) Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy, Physica A: Statistical Mechanics and its Applications 266, 1-4, 242–246. [CrossRef] [Google Scholar]
  • Le Borgne T., Bour O., de Dreuzy J.R., Davy P., Touchard F. (2004) Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation, Water. Resour. Res. 40, W03512. [CrossRef] [Google Scholar]
  • Leveinen J. (2000) Composite model with fractional flow dimensions for well test analysis in fractured rocks, J. Hydrol. 234, 116–141. [CrossRef] [Google Scholar]
  • Mainardi F., Luchko Y., Pagnini G. (2001) Fractional Calculus and Applied Analysis 4, 2, 153–192. [Google Scholar]
  • Metzler R., Klafter J. (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339, 1–77. [Google Scholar]
  • Metzler R., Klafter J. (2004) The restaurant the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen. 37, R161–R208. [NASA ADS] [CrossRef] [Google Scholar]
  • Metzler R., Glockle W.G., Nonenmacher T.F. (1994) Fractional model equation for anomalous diffusion, Physica A 211, 13–24. [Google Scholar]
  • Miller K.S., Ross B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York. [Google Scholar]
  • Minpack (1999) www.netlib.org. [Google Scholar]
  • Neuman S.P. (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Res. Research 26, 8, 1749–1758. [CrossRef] [Google Scholar]
  • O’Shaugnessy B., Procaccia I. (1985) Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett. 54, 5, 455–458. [CrossRef] [PubMed] [Google Scholar]
  • Oldham K.B., Spanier J. (1974) The Fractional Calculus, Academic Press, New York. [Google Scholar]
  • Podlubny I. (1999) Fractional Differential Equations, Academic Press, New York. [Google Scholar]
  • Raghavan R. (2011) Fractional derivatives: Application to transient flow, Journal of Petroleum Science and Engineering 80, 1, 7–13. [Google Scholar]
  • Rammal R., Angles D’Auriac J.C., Benoit A. (1984) Universality of the spectral dimension of percolation clusters, Phys. Rev. B 30, 4087. [CrossRef] [Google Scholar]
  • Sahimi M. (1993) Fractal and Superdiffusive Transport and Hydrodynamic Dispersion in Heterogeneous Poroous Media, Transport in porous Media 13, 3–40. [CrossRef] [Google Scholar]
  • Sahimi M. (1994) Applications of Percolation Theory, Taylor and Francis, Bristol. [Google Scholar]
  • Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, VCH, Weinheim, pp. 204–205. [Google Scholar]
  • Schapery A. (1961) Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis, Technical Report, 4th US National Congress Appl. Math. [Google Scholar]
  • Schroeder M. (1990) Fractals, Chaos, Power Laws, Freeman, New York. [Google Scholar]
  • Vlahos L., Isliker H., Kominis Y., Hizanidis K. (2008) Normal and Anomalous Diffusion: A Tutorial, arXiv:0805.0419v1. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.