Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Number 1, January–February 2016
Article Number 9
Number of page(s) 9
Published online 22 January 2016
  • Adler P.M., Thovert J.F. (1993) Fractal Porous Media, Transport in Porous Media 13, 41–78. [CrossRef]
  • Adler P.M., Thovert J.F. (1999) Fractures and Fracture Networks, Kluwer, Dordrecht. [CrossRef]
  • Agrawal O.P. (2002) Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, Nonlinear Dynamics 29, 145–155. [CrossRef]
  • Alexander S., Orbach R. (1982) Density of states on fractals: ‘fractons’, J. Phys. Lett. 43, L625–631. [CrossRef] [EDP Sciences]
  • Barker J.A. (1988) A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res. 24, 10, 1796–1804. [CrossRef]
  • Ben-Avraham D., Havlin S. (2000) Diffusion and Reactions in Fractals and Disordered Systems, Cambridge, Massachusetts, Cambridge U Press. [CrossRef]
  • Bernard S., Delay F., Porel G. (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers, J Hydrology 328, 647–658. [CrossRef]
  • Butzer P.L., Westphal U. (2000) An introduction to fractional calculus, Hilfer R. (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, pp. 1–85. [CrossRef]
  • Camacho Velazquez R., Fuentes-Cruz G., Vásquez-Cruz M. (2008) Decline Curve Analysis of Fractured Reservoirs with Fractal Geometry, SPE Reservoir Evaluation & Engineering 11, 03, 606–619. [CrossRef]
  • Carslaw H.S, Jaeger J.C. (1959) Conduction of Heat in Solids, 2nd ed., Oxford U. Press, New York.
  • Chang J., Yortsos Y.C. (1990) Pressure Transient Analysis of Fractal Reservoirs, SPE Formation Evaluation 5, 01, 31–38. [CrossRef]
  • Chen T., Noirot J.-C., Khandelwal A., Xue Guangri, Barton M.D., Alpak F.O. (2012) Estimating Stratigraphic Parameters from Well Test Data in Turbidite Reservoirs, SPE Annual Technical Conference and Exhibition, 8-10 Oct, San Antonio TX, USA, SPE Paper 159090.
  • Compte A. (1996) Phys. Rev. E 53, 4, 4191–4193. [CrossRef]
  • Crump K.S. (1976) Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation, Journal ACM 23, 1, 89–96. [CrossRef]
  • de Swaan A. (1986) Influence of Shape and Skin of Matrix-Rock Blocks on Pressure Transients in Fractured Reservoirs, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, 5-8 Oct, New Orleans, LA, SPE Paper 15637.
  • de Swaan A. (1998) Transient Fluid Flow through Composite Geometries, SPE International Petroleum Conference and Exhibition of Mexico, 3-5 March, Villahermosa Mexico, SPE Paper 36777.
  • de Swaan A. (2000) Analysis of Well Tests in Multiple Fractured Reservoirs - Field Case Applications, SPE International Petroleum Conference and Exhibition, 1-3 Feb, Villahermosa, Mexico, SPE Paper 59015.
  • de Swaan A., Camacho-Velasquez R., Vasquez-Cruz M. (2012) Interference Tests Analysis in Fractured Formations with a Time-Fractional Equation, SPE Latin American and Caribbean Petroleum Engineering Conference, 16-18 April, Mexico-City, Mexico, SPE Paper 153615-PP.
  • Essam J.W., Bhatti F.M. (1985) Series expansion evidence supporting the Alexander-Orbach conjecture in two dimensions, J. Phys. A 18, 3577–3584. [CrossRef] [MathSciNet]
  • Gorenflo R., Mainardi F. (1997) Fractional calculus: integral and differential equations of fractional order, Carpinteri A., Mainardi F. (eds), Fractals and Fractional Calculus in Continuum Mechanic, Springer Verlag, Vienna, pp. 223–276. [CrossRef]
  • Klemm A., Müller H.P., Kimmich R. (1999) Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy, Physica A: Statistical Mechanics and its Applications 266, 1-4, 242–246. [CrossRef]
  • Le Borgne T., Bour O., de Dreuzy J.R., Davy P., Touchard F. (2004) Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation, Water. Resour. Res. 40, W03512. [CrossRef]
  • Leveinen J. (2000) Composite model with fractional flow dimensions for well test analysis in fractured rocks, J. Hydrol. 234, 116–141. [CrossRef]
  • Mainardi F., Luchko Y., Pagnini G. (2001) Fractional Calculus and Applied Analysis 4, 2, 153–192. [MathSciNet]
  • Metzler R., Klafter J. (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339, 1–77. [NASA ADS] [CrossRef]
  • Metzler R., Klafter J. (2004) The restaurant the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen. 37, R161–R208. [NASA ADS] [CrossRef]
  • Metzler R., Glockle W.G., Nonenmacher T.F. (1994) Fractional model equation for anomalous diffusion, Physica A 211, 13–24. [CrossRef]
  • Miller K.S., Ross B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York.
  • Minpack (1999)
  • Neuman S.P. (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Res. Research 26, 8, 1749–1758. [CrossRef]
  • O’Shaugnessy B., Procaccia I. (1985) Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett. 54, 5, 455–458. [CrossRef] [PubMed]
  • Oldham K.B., Spanier J. (1974) The Fractional Calculus, Academic Press, New York.
  • Podlubny I. (1999) Fractional Differential Equations, Academic Press, New York.
  • Raghavan R. (2011) Fractional derivatives: Application to transient flow, Journal of Petroleum Science and Engineering 80, 1, 7–13. [CrossRef]
  • Rammal R., Angles D’Auriac J.C., Benoit A. (1984) Universality of the spectral dimension of percolation clusters, Phys. Rev. B 30, 4087. [CrossRef]
  • Sahimi M. (1993) Fractal and Superdiffusive Transport and Hydrodynamic Dispersion in Heterogeneous Poroous Media, Transport in porous Media 13, 3–40. [CrossRef]
  • Sahimi M. (1994) Applications of Percolation Theory, Taylor and Francis, Bristol.
  • Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, VCH, Weinheim, pp. 204–205.
  • Schapery A. (1961) Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis, Technical Report, 4th US National Congress Appl. Math.
  • Schroeder M. (1990) Fractals, Chaos, Power Laws, Freeman, New York.
  • Vlahos L., Isliker H., Kominis Y., Hizanidis K. (2008) Normal and Anomalous Diffusion: A Tutorial, arXiv:0805.0419v1.

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.