Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 71, Numéro 1, January–February 2016
Numéro d'article 9
Nombre de pages 9
DOI https://doi.org/10.2516/ogst/2014038
Publié en ligne 22 janvier 2016
  • Adler P.M., Thovert J.F. (1993) Fractal Porous Media, Transport in Porous Media 13, 41–78. [CrossRef] [Google Scholar]
  • Adler P.M., Thovert J.F. (1999) Fractures and Fracture Networks, Kluwer, Dordrecht. [CrossRef] [Google Scholar]
  • Agrawal O.P. (2002) Solution for a Fractional Diffusion-Wave Equation Defined in a Bounded Domain, Nonlinear Dynamics 29, 145–155. [Google Scholar]
  • Alexander S., Orbach R. (1982) Density of states on fractals: ‘fractons’, J. Phys. Lett. 43, L625–631. [Google Scholar]
  • Barker J.A. (1988) A generalized radial flow model for hydraulic tests in fractured rock, Water Resour. Res. 24, 10, 1796–1804. [Google Scholar]
  • Ben-Avraham D., Havlin S. (2000) Diffusion and Reactions in Fractals and Disordered Systems, Cambridge, Massachusetts, Cambridge U Press. [Google Scholar]
  • Bernard S., Delay F., Porel G. (2006) A new method of data inversion for the identification of fractal characteristics and homogenization scale from hydraulic pumping tests in fractured aquifers, J Hydrology 328, 647–658. [Google Scholar]
  • Butzer P.L., Westphal U. (2000) An introduction to fractional calculus, Hilfer R. (ed.), Applications of Fractional Calculus in Physics, World Scientific, Singapore, pp. 1–85. [CrossRef] [Google Scholar]
  • Camacho Velazquez R., Fuentes-Cruz G., Vásquez-Cruz M. (2008) Decline Curve Analysis of Fractured Reservoirs with Fractal Geometry, SPE Reservoir Evaluation & Engineering 11, 03, 606–619. [Google Scholar]
  • Carslaw H.S, Jaeger J.C. (1959) Conduction of Heat in Solids, 2nd ed., Oxford U. Press, New York. [Google Scholar]
  • Chang J., Yortsos Y.C. (1990) Pressure Transient Analysis of Fractal Reservoirs, SPE Formation Evaluation 5, 01, 31–38. [Google Scholar]
  • Chen T., Noirot J.-C., Khandelwal A., Xue Guangri, Barton M.D., Alpak F.O. (2012) Estimating Stratigraphic Parameters from Well Test Data in Turbidite Reservoirs, SPE Annual Technical Conference and Exhibition, 8-10 Oct, San Antonio TX, USA, SPE Paper 159090. [Google Scholar]
  • Compte A. (1996) Phys. Rev. E 53, 4, 4191–4193. [CrossRef] [Google Scholar]
  • Crump K.S. (1976) Numerical Inversion of Laplace Transforms Using a Fourier Series Approximation, Journal ACM 23, 1, 89–96. [CrossRef] [Google Scholar]
  • de Swaan A. (1986) Influence of Shape and Skin of Matrix-Rock Blocks on Pressure Transients in Fractured Reservoirs, 61st Annual Technical Conference and Exhibition of the Society of Petroleum Engineers, 5-8 Oct, New Orleans, LA, SPE Paper 15637. [Google Scholar]
  • de Swaan A. (1998) Transient Fluid Flow through Composite Geometries, SPE International Petroleum Conference and Exhibition of Mexico, 3-5 March, Villahermosa Mexico, SPE Paper 36777. [Google Scholar]
  • de Swaan A. (2000) Analysis of Well Tests in Multiple Fractured Reservoirs - Field Case Applications, SPE International Petroleum Conference and Exhibition, 1-3 Feb, Villahermosa, Mexico, SPE Paper 59015. [Google Scholar]
  • de Swaan A., Camacho-Velasquez R., Vasquez-Cruz M. (2012) Interference Tests Analysis in Fractured Formations with a Time-Fractional Equation, SPE Latin American and Caribbean Petroleum Engineering Conference, 16-18 April, Mexico-City, Mexico, SPE Paper 153615-PP. [Google Scholar]
  • Essam J.W., Bhatti F.M. (1985) Series expansion evidence supporting the Alexander-Orbach conjecture in two dimensions, J. Phys. A 18, 3577–3584. [CrossRef] [MathSciNet] [Google Scholar]
  • Gorenflo R., Mainardi F. (1997) Fractional calculus: integral and differential equations of fractional order, Carpinteri A., Mainardi F. (eds), Fractals and Fractional Calculus in Continuum Mechanic, Springer Verlag, Vienna, pp. 223–276. [Google Scholar]
  • Klemm A., Müller H.P., Kimmich R. (1999) Evaluation of fractal parameters of percolation model objects and natural porous media by means of NMR microscopy, Physica A: Statistical Mechanics and its Applications 266, 1-4, 242–246. [CrossRef] [Google Scholar]
  • Le Borgne T., Bour O., de Dreuzy J.R., Davy P., Touchard F. (2004) Equivalent mean flow models for fractured aquifers: Insights from a pumping tests scaling interpretation, Water. Resour. Res. 40, W03512. [CrossRef] [Google Scholar]
  • Leveinen J. (2000) Composite model with fractional flow dimensions for well test analysis in fractured rocks, J. Hydrol. 234, 116–141. [CrossRef] [Google Scholar]
  • Mainardi F., Luchko Y., Pagnini G. (2001) Fractional Calculus and Applied Analysis 4, 2, 153–192. [Google Scholar]
  • Metzler R., Klafter J. (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Physics Reports 339, 1–77. [Google Scholar]
  • Metzler R., Klafter J. (2004) The restaurant the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, J. Phys. A: Math. Gen. 37, R161–R208. [NASA ADS] [CrossRef] [Google Scholar]
  • Metzler R., Glockle W.G., Nonenmacher T.F. (1994) Fractional model equation for anomalous diffusion, Physica A 211, 13–24. [Google Scholar]
  • Miller K.S., Ross B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York. [Google Scholar]
  • Minpack (1999) www.netlib.org. [Google Scholar]
  • Neuman S.P. (1990) Universal scaling of hydraulic conductivities and dispersivities in geologic media, Water Res. Research 26, 8, 1749–1758. [CrossRef] [Google Scholar]
  • O’Shaugnessy B., Procaccia I. (1985) Analytical solutions for diffusion on fractal objects, Phys. Rev. Lett. 54, 5, 455–458. [CrossRef] [PubMed] [Google Scholar]
  • Oldham K.B., Spanier J. (1974) The Fractional Calculus, Academic Press, New York. [Google Scholar]
  • Podlubny I. (1999) Fractional Differential Equations, Academic Press, New York. [Google Scholar]
  • Raghavan R. (2011) Fractional derivatives: Application to transient flow, Journal of Petroleum Science and Engineering 80, 1, 7–13. [Google Scholar]
  • Rammal R., Angles D’Auriac J.C., Benoit A. (1984) Universality of the spectral dimension of percolation clusters, Phys. Rev. B 30, 4087. [CrossRef] [Google Scholar]
  • Sahimi M. (1993) Fractal and Superdiffusive Transport and Hydrodynamic Dispersion in Heterogeneous Poroous Media, Transport in porous Media 13, 3–40. [CrossRef] [Google Scholar]
  • Sahimi M. (1994) Applications of Percolation Theory, Taylor and Francis, Bristol. [Google Scholar]
  • Sahimi M. (1995) Flow and Transport in Porous Media and Fractured Rock: From Classical Methods to Modern Approaches, VCH, Weinheim, pp. 204–205. [Google Scholar]
  • Schapery A. (1961) Approximate Methods of Transform Inversion for Viscoelastic Stress Analysis, Technical Report, 4th US National Congress Appl. Math. [Google Scholar]
  • Schroeder M. (1990) Fractals, Chaos, Power Laws, Freeman, New York. [Google Scholar]
  • Vlahos L., Isliker H., Kominis Y., Hizanidis K. (2008) Normal and Anomalous Diffusion: A Tutorial, arXiv:0805.0419v1. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.