IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 831 - 839
DOI https://doi.org/10.2516/ogst/2015025
Published online 29 September 2015
  • Rossetti I. (2012) Hydrogen Production by Photoreforming of Renewable Substrates, ISRN Chemical Engineering 2012, 21. [CrossRef] [Google Scholar]
  • Chiarello G.L., Forni L., Selli E. (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2 , Catalysis Today 144, 69–74. [CrossRef] [Google Scholar]
  • Gombac V., Sordelli L., Montini T., Delgado J.J., Adamski A., Adami G., Cargnello M., Bernal S., Fornasiero P. (2009) CuOx−TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Solutions, The Journal of Physical Chemistry A 114, 3916–3925. [CrossRef] [Google Scholar]
  • Wu G., Chen T., Su W., Zhou G., Zong X., Lei Z., Li C. (2008) H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst, International Journal of Hydrogen Energy 33, 1243–1251. [CrossRef] [Google Scholar]
  • Al-Mazroai L.S., Bowker M., Davies P., Dickinson A., Greaves J., James D., Millard L. (2007) The photocatalytic reforming of methanol, Catalysis Today 122, 46–50. [CrossRef] [Google Scholar]
  • Taylor C. (2005) Photocatalytic conversion of methane contained in methane hydrates, Top Catal. 32, 179–184. [CrossRef] [Google Scholar]
  • Xu S., Sun D.D. (2009) Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO, International Journal of Hydrogen Energy 34, 6096–6104. [CrossRef] [Google Scholar]
  • Yoshida H., Hirao K., Nishimoto J.-i., Shimura K., Kato S., Itoh H., Hattori T. (2008) Hydrogen Production from Methane and Water on Platinum Loaded Titanium Oxide Photocatalysts, The Journal of Physical Chemistry C 112, 5542–5551. [CrossRef] [Google Scholar]
  • Chiarello G.L., Selli E., Forni L. (2008) Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2, Applied Catalysis B: Environmental 84, 332–339. [CrossRef] [Google Scholar]
  • Zalas M., Laniecki M. (2005) Photocatalytic hydrogen generation over lanthanides-doped titania, Solar Energy Materials and Solar Cells 89, 287–296. [CrossRef] [Google Scholar]
  • Lalitha K., Reddy J.K., Phanikrishna Sharma M.V., Kumari V.D., Subrahmanyam M. (2010) Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: A structure–activity correlation, International Journal of Hydrogen Energy 35, 3991–4001. [CrossRef] [Google Scholar]
  • Oros-Ruiz S., Zanella R., López R., Hernández-Gordillo A., Gómez R. (2013) Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea, Journal of Hazardous Materials 263, 1, 2–10. [CrossRef] [PubMed] [Google Scholar]
  • Chen W.-T., Jovic V., Sun-Waterhouse D., Idriss H., Waterhouse G.I.N. (2013) The role of CuO in promoting photocatalytic hydrogen production over TiO2 , International Journal of Hydrogen Energy 38, 15036–15048. [CrossRef] [Google Scholar]
  • Onsuratoom S., Puangpetch T., Chavadej S. (2011) Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts, Chemical Engineering Journal 173, 667–675. [CrossRef] [Google Scholar]
  • Holliday S.T.R., (2003) Gold Reference Catalyst, Gold Bulletin 36, 1, 24. [CrossRef] [Google Scholar]
  • Dickinson A., James D., Perkins N., Cassidy T., Bowker M. (1999) The photocatalytic reforming of methanol, Journal of Molecular Catalysis A: Chemical 146, 211–221. [CrossRef] [Google Scholar]
  • Takanabe K., Nagaoka K., Nariai K., Aika K.-i. (2005) Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure, Journal of Catalysis 230, 75–85. [CrossRef] [Google Scholar]
  • Sreethawong T., Yoshikawa S. (2005) Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts, Catalysis Communications 6, 661–668. [CrossRef] [Google Scholar]
  • Wu N.-L., Lee M.-S., Pon Z.-J., Hsu J.-Z. (2004) Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution, Journal of Photochemistry and Photobiology A: Chemistry 163, 277–280. [CrossRef] [Google Scholar]
  • Raj K.J.A., Viswanathan B. (2009) Effect of surface area pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian J. Chem. A 48, 1378–1382. [Google Scholar]
  • Xu B., Dong L., Chen Y. (1998) Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system, Journal of the Chemical Society Faraday Transactions 94, 1905–1909. [CrossRef] [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.