IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 817 - 829
DOI https://doi.org/10.2516/ogst/2015010
Published online 20 August 2015
  • Honda K., Fujishima A. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238, 37–38. [CrossRef] [PubMed]
  • Kato H., Asakura K., Kudo A. (2003) Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc. 125, 10, 3082–3089. [CrossRef] [PubMed]
  • Chen D., Ye J. (2007) SrSnO3 Nanostructures: Synthesis, Characterization, and Photocatalytic Properties, Chem. Mater. 19, 18, 4585–4591. [CrossRef]
  • Domen K., Kudo A., Ohnishi T. (1986) Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3, J. Catal. 102, 92–98. [CrossRef]
  • Zou Z., Ye J., Sayama K., Arakawa H. (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, 625–627. [CrossRef] [PubMed]
  • Luo J., Maggard P.A. (2006) Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3, Adv. Mater. 18, 4, 514–517. [CrossRef]
  • Woodhouse M., Parkinson B.A. (2008) Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity, Chem. Mater. 20, 7, 2495–2502. [CrossRef]
  • Bao N., Shen L., Takata T., Domen K. (2008) Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light, Chemistry Materials 20, 1, 110–117. [CrossRef]
  • Jing D., Guo L. (2006) A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure, J. Phys. Chem. B 110, 23, 11139–11145. [CrossRef] [PubMed]
  • Reber J.-F., Meier K. (1984) Photochemical production of hydrogen with zinc sulphide suspensions, J. Phys. Chem. 88, 5903–5913. [CrossRef]
  • Kudo A., Tsuji I., Kato H. (2002) AgInZn7S9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation, Chem. Commun. 17, 1958–1959. [CrossRef]
  • Kudo A., Niishiro R., Iwase A., Kato H. (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts, Chem. Phys. 339, 1-3, 104–110. [CrossRef]
  • Kudo A., Miseki Y. (2009) Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 1, 253–278. [CrossRef] [PubMed]
  • Rockenberger J., Troger L., Kornowski A., Vossmeyer T., Eychmuller A., Feldhaus J., Weller H. (1997) EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles, J. Phys. Chem. B 101, 14, 2691–2701. [CrossRef]
  • Nosaka Y., Shigeno H., Ikeuchi T. (1995) Formation of polynuclear cadmium-thiolate complexes and cds clusters in aqueous-solution studied by means of stopped-flow and NMR spectroscopies, J. Phys. Chem. 99, 20, 8317–8322. [CrossRef]
  • Vogel W., Borse P.H., Deshmukh N., Kulkarni S.K. (2000) Structure and stability of monodisperse 1.4-nm ZnS particles stabilized by mercaptoethanol, Langmuir 16, 4, 2032–2037. [CrossRef]
  • Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerward M.L., Carroll P.J., Brus L.E. (1984) J. Am. Chem. Soc. 106, 6285–6295. [CrossRef]
  • Dance I.G., Choy A., Scudder M.L. (1984) Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E = sulfur or selenium; M = zinc or cadmium): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice, J. Am. Chem. Soc. 106, 21, 11. [CrossRef]
  • Mokili B., Charreire Y., Cortes R., Lincot D. (1996) Thin Solid Films 288, 21–28. [CrossRef]
  • Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerwald M.L., Carroll P.J., Brus L.E. (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. 112, 4, 1327–1332. [CrossRef]
  • Calandra P., Longo A., Liveri V.T. (2003) Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles, J. Phys. Chem. B 107, 1, 25–30. [CrossRef]
  • Meneau F., Sankar G., Morgante N., Winter R., Catlow C.R.A., Greaves G.N., Thomas J.M. (2003) Following the formation of nanometer-sized clusters by time-resolved SAXS and EXAFS techniques, Faraday Discuss. 122, 203–210. [CrossRef] [PubMed]
  • Meneau F., Cristol S., Sankar G., Dolbnya I.P., Bras W., Catlow C.R.A., Thomas J.M., Greaves G.N. (2003) In situ study of the formation of CdS nanoparticles by small-angle X-ray scattering, J. Appl. Crystallogr. 36, 718–721. [CrossRef]
  • Celikkaya A., Mufit A. (1990) Preparation and mechanism of formation of spherical submicrometer zinc sulfide powders, J. Am. Ceram. Soc. 65, 198329, 2360–2365. [CrossRef]
  • Liu G., Zhao L., Ma L., Guo L. (2008) Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst, Catal. Commun. 9, 5.
  • Karar N. (2007) Photoluminescence from doped ZnS nanostructures, Solid State Commun. 142, 4. [CrossRef]
  • Gruy F., Mekki-Berrada M.K., Cournil M. (2009) Precipitation dynamics of zinc sulfide multi-scale agglomerates, AlChE J. 55, 10, 10.
  • Berlier G., Meneau F., Sankar G., Catlow C.R.A., Thomas J.M., Spliethoff B., Schueth F., Coluccia S. (2006) Synthesis and characterisation of small ZnS particles, Res. Chem. Intermed. 32, 7, 683–693. [CrossRef]
  • Balantseva E., Berlier G., Camino B., Lessio M., Ferrari A.M. (2014) Surface Properties of ZnS Nanoparticles: A Combined DFT and Experimental Study, J. Phys. Chem. C 118, 41, 23853–23862. [CrossRef]
  • Monshi A., Foroughi M.R., Monshi M.R. (2012) Modified Scherrer Equation to Estimate More Accurately World Nano-Crystallite Size Using XRD, Journal of Nano Science and Engineering 2, 154–160.
  • Brunauer S., Emmet P.H., Teller E. (1938) Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60, 309–319. [CrossRef]
  • Barret E.P., Joyner L.G., Halenda P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc. 73, 1, 373–380. [CrossRef]
  • Webb P.A., Orr C. (1997) Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp, Norcross, GA, USA.
  • Weller H. (1993) Colloidal Semiconductor Q-Particles - Chemistry in the Transition Region between Solid-State and Molecules, Angew. Chem. Int. Ed. 32, 1, 41–53. [CrossRef]
  • Brus L.E. (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80, 9, 4403. [CrossRef]
  • Calandra P., Goffredi M., Liveri V.T. (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy, Colloid Surf. A 160, 1, 9–13. [CrossRef]
  • Manyar H.G., Iliade P., Bertinetti L., Coluccia S., Berlier G. (2011) Structural and spectroscopic investigation of ZnS nanoparticles grown in quaternary reverse micelles, J. Colloid Interface Sci. 354, 2, 511–516. [CrossRef] [PubMed]
  • Grozdanov I., Najdoski M. (1995) Optical and electrical-properties of copper sulfide films of variable composition, J. Solid State Chem. 1142, 469–475. [CrossRef]
  • Saravanan R.S.S., Pukazhselvan D., Mahadevan C.K. (2012) Studies on the synthesis of cubic ZnS quantum dots, capping and optical-electrical characteristics, J. Alloys Compd. 517, 139–148. [CrossRef]
  • Amirtharaj P.M., Seiler D.G. (2009) Optical properties of semiconductors, in Handbook of Optics, McGraw Hill, New York, NY.
  • Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N.M., Bush I.J., et al. CRYSTAL09 User’s Manual, University of Torino.
  • Becke A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior, Phys. Rev. A 38, 6, 3098–3100. [NASA ADS] [CrossRef] [PubMed]
  • Perdew J.P., Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B 45, 23, 13244–13249. [CrossRef]
  • Adamo C., Barone V. (1999) J. Chem. Phys. 110, 6158–6170. [NASA ADS] [CrossRef]
  • Stevens W.J., Krauss M., Bash H., Jaisen P.G. (1992) Can. J. Chem. 70, 612–630. [CrossRef]
  • Mino L., Ferrari A.M., Lacivita V., Spoto G., Bordiga S., Zecchina A. (2011) CO Adsorption on Anatase Nanocrystals: A Combined Experimental and Periodic DFT Study, J. Phys. Chem. C 115, 15, 7694–7700. [CrossRef]
  • Mino L., Spoto G., Ferrari A.M. (2014) CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study, J. Phys. Chem. C 118, 43, 25016–25026. [CrossRef]
  • Hamad S., Catlow C.R.A. (2006) Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm, J. Cryst. Growth 294, 1, 2–8. [CrossRef]
  • Hamad S., Catlow C.R.A., Spano E., Matxain J.M., Ugalde J.M. (2005) Structure and properties of ZnS nanoclusters, J. Phys. Chem. B 109, 7, 2703–2709. [CrossRef] [PubMed]
  • Hamad S., Cristol S., Catlow C.R.A. (2005) Simulation of the embryonic stage of ZnS formation from aqueous solution, J. Am. Chem. Soc. 127, 8, 2580–2590. [CrossRef] [PubMed]
  • Hamad S., Woodley S.M., Catlow C.R.A. (2009) Experimental and computational studies of ZnS nanostructures, Mol. Simul. 35, 12-13, 1015–1032. [CrossRef]
  • Boys S.F., Bernardi F. (1970) The calculation of small molecular interaction by the difference of separate total energies. Some procedures with reduced errors, Mol. Phys. 19, 553–566. [NASA ADS] [CrossRef]
  • Murugadoss G. (2011) Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method, J. Lumin. 131, 10, 2216–2223. [CrossRef]
  • Wang L., Zhao C., Meng F., Huang S., Yuan X., Xu X., Yang Z., Yang H. (2010) Optical properties and simultaneous synthesis of ZnS and ZnO nanoparticles via one reverse micellar system, Colloid Surf. A 360, 1-3, 205–209. [CrossRef]
  • Emin S., Lisjak D., Pitcher M., Valant M. (2013) Structural and morphological transformations of textural porous zinc sulfide microspheres, Microporous Mesoporous Mater. 165, 185–192. [CrossRef]
  • Socrates G. (2006) Infrared and Raman characteristic group frequencies, John Wiley & Sons Ltd, Chichester, England.
  • Rosenthal D., Taylor T.I. (1957) A Study of the Mechanism and Kinetics of the Thioacetamide Hydrolysis Reaction, J. Am. Chem. Soc. 79, 11, 2684–2690. [CrossRef]
  • Gunning H.E. (1955) Thioacetamide as a Sulfide Presipitant in Qualitative and Quantitative Analysis, J. Chem. Educ. 32, 5, 258–259. [CrossRef]
  • Siriwardane R.V., Woodruff S. (1997) In situ Fourier transform infrared characterization of sulfur species resulting from the reaction of water vapor and oxygen with zinc sulfide, Ind. Eng. Chem. Res. 36, 12, 5277–5281. [CrossRef]
  • Tasker P.W. (1979) J. Phys. Chem. 12, 4977.
  • Goniakowski J., Finocchi F., Noguera C. (2008) Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71, 016501. [CrossRef]
  • Alivisatos A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 5251, 933–937. [CrossRef]
  • Brus L. (1986) Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory, J. Phys. Chem. 90, 2255–2560. [CrossRef]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.