IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 817 - 829
DOI https://doi.org/10.2516/ogst/2015010
Published online 20 August 2015
  • Honda K., Fujishima A. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238, 37–38. [CrossRef] [PubMed] [Google Scholar]
  • Kato H., Asakura K., Kudo A. (2003) Highly Efficient Water Splitting into H2 and O2 over Lanthanum-Doped NaTaO3 Photocatalysts with High Crystallinity and Surface Nanostructure, J. Am. Chem. Soc. 125, 10, 3082–3089. [CrossRef] [PubMed] [Google Scholar]
  • Chen D., Ye J. (2007) SrSnO3 Nanostructures: Synthesis, Characterization, and Photocatalytic Properties, Chem. Mater. 19, 18, 4585–4591. [CrossRef] [Google Scholar]
  • Domen K., Kudo A., Ohnishi T. (1986) Mechanism of photocatalytic decomposition of water into H2 and O2 over NiO-SrTiO3, J. Catal. 102, 92–98. [CrossRef] [Google Scholar]
  • Zou Z., Ye J., Sayama K., Arakawa H. (2001) Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst, Nature 414, 625–627. [CrossRef] [PubMed] [Google Scholar]
  • Luo J., Maggard P.A. (2006) Hydrothermal Synthesis and Photocatalytic Activities of SrTiO3-Coated Fe2O3 and BiFeO3, Adv. Mater. 18, 4, 514–517. [CrossRef] [Google Scholar]
  • Woodhouse M., Parkinson B.A. (2008) Combinatorial Discovery and Optimization of a Complex Oxide with Water Photoelectrolysis Activity, Chem. Mater. 20, 7, 2495–2502. [CrossRef] [Google Scholar]
  • Bao N., Shen L., Takata T., Domen K. (2008) Self-Templated Synthesis of Nanoporous CdS Nanostructures for Highly Efficient Photocatalytic Hydrogen Production under Visible Light, Chemistry Materials 20, 1, 110–117. [CrossRef] [Google Scholar]
  • Jing D., Guo L. (2006) A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure, J. Phys. Chem. B 110, 23, 11139–11145. [CrossRef] [PubMed] [Google Scholar]
  • Reber J.-F., Meier K. (1984) Photochemical production of hydrogen with zinc sulphide suspensions, J. Phys. Chem. 88, 5903–5913. [CrossRef] [Google Scholar]
  • Kudo A., Tsuji I., Kato H. (2002) AgInZn7S9 solid solution photocatalyst for H-2 evolution from aqueous solutions under visible light irradiation, Chem. Commun. 17, 1958–1959. [CrossRef] [Google Scholar]
  • Kudo A., Niishiro R., Iwase A., Kato H. (2007) Effects of doping of metal cations on morphology, activity, and visible light response of photocatalysts, Chem. Phys. 339, 1-3, 104–110. [CrossRef] [Google Scholar]
  • Kudo A., Miseki Y. (2009) Heterogeneous photocatalyst materials for water splitting, Chem. Soc. Rev. 38, 1, 253–278. [CrossRef] [PubMed] [Google Scholar]
  • Rockenberger J., Troger L., Kornowski A., Vossmeyer T., Eychmuller A., Feldhaus J., Weller H. (1997) EXAFS studies on the size dependence of structural and dynamic properties of CdS nanoparticles, J. Phys. Chem. B 101, 14, 2691–2701. [CrossRef] [Google Scholar]
  • Nosaka Y., Shigeno H., Ikeuchi T. (1995) Formation of polynuclear cadmium-thiolate complexes and cds clusters in aqueous-solution studied by means of stopped-flow and NMR spectroscopies, J. Phys. Chem. 99, 20, 8317–8322. [CrossRef] [Google Scholar]
  • Vogel W., Borse P.H., Deshmukh N., Kulkarni S.K. (2000) Structure and stability of monodisperse 1.4-nm ZnS particles stabilized by mercaptoethanol, Langmuir 16, 4, 2032–2037. [CrossRef] [Google Scholar]
  • Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerward M.L., Carroll P.J., Brus L.E. (1984) J. Am. Chem. Soc. 106, 6285–6295. [CrossRef] [Google Scholar]
  • Dance I.G., Choy A., Scudder M.L. (1984) Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16] (E = sulfur or selenium; M = zinc or cadmium): molecular supertetrahedral fragments of the cubic metal chalcogenide lattice, J. Am. Chem. Soc. 106, 21, 11. [Google Scholar]
  • Mokili B., Charreire Y., Cortes R., Lincot D. (1996) Thin Solid Films 288, 21–28. [CrossRef] [Google Scholar]
  • Kortan A.R., Hull R., Opila R.L., Bawendi M.G., Steigerwald M.L., Carroll P.J., Brus L.E. (1990) Nucleation and growth of CdSe on ZnS quantum crystallite seeds, and vice versa, in inverse micelle media, J. Am. Chem. Soc. 112, 4, 1327–1332. [CrossRef] [Google Scholar]
  • Calandra P., Longo A., Liveri V.T. (2003) Synthesis of ultra-small ZnS nanoparticles by solid-solid reaction in the confined space of AOT reversed micelles, J. Phys. Chem. B 107, 1, 25–30. [CrossRef] [Google Scholar]
  • Meneau F., Sankar G., Morgante N., Winter R., Catlow C.R.A., Greaves G.N., Thomas J.M. (2003) Following the formation of nanometer-sized clusters by time-resolved SAXS and EXAFS techniques, Faraday Discuss. 122, 203–210. [CrossRef] [PubMed] [Google Scholar]
  • Meneau F., Cristol S., Sankar G., Dolbnya I.P., Bras W., Catlow C.R.A., Thomas J.M., Greaves G.N. (2003) In situ study of the formation of CdS nanoparticles by small-angle X-ray scattering, J. Appl. Crystallogr. 36, 718–721. [CrossRef] [Google Scholar]
  • Celikkaya A., Mufit A. (1990) Preparation and mechanism of formation of spherical submicrometer zinc sulfide powders, J. Am. Ceram. Soc. 65, 198329, 2360–2365. [CrossRef] [Google Scholar]
  • Liu G., Zhao L., Ma L., Guo L. (2008) Photocatalytic H2 evolution under visible light irradiation on a novel CdxCuyZn1-x-yS catalyst, Catal. Commun. 9, 5. [Google Scholar]
  • Karar N. (2007) Photoluminescence from doped ZnS nanostructures, Solid State Commun. 142, 4. [CrossRef] [Google Scholar]
  • Gruy F., Mekki-Berrada M.K., Cournil M. (2009) Precipitation dynamics of zinc sulfide multi-scale agglomerates, AlChE J. 55, 10, 10. [Google Scholar]
  • Berlier G., Meneau F., Sankar G., Catlow C.R.A., Thomas J.M., Spliethoff B., Schueth F., Coluccia S. (2006) Synthesis and characterisation of small ZnS particles, Res. Chem. Intermed. 32, 7, 683–693. [CrossRef] [Google Scholar]
  • Balantseva E., Berlier G., Camino B., Lessio M., Ferrari A.M. (2014) Surface Properties of ZnS Nanoparticles: A Combined DFT and Experimental Study, J. Phys. Chem. C 118, 41, 23853–23862. [CrossRef] [Google Scholar]
  • Monshi A., Foroughi M.R., Monshi M.R. (2012) Modified Scherrer Equation to Estimate More Accurately World Nano-Crystallite Size Using XRD, Journal of Nano Science and Engineering 2, 154–160. [Google Scholar]
  • Brunauer S., Emmet P.H., Teller E. (1938) Adsorption of Gases in Multimolecular Layers, J. Am. Chem. Soc. 60, 309–319. [Google Scholar]
  • Barret E.P., Joyner L.G., Halenda P.P. (1951) The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, J. Am. Chem. Soc. 73, 1, 373–380. [CrossRef] [Google Scholar]
  • Webb P.A., Orr C. (1997) Analytical Methods in Fine Particle Technology, Micromeritics Instrument Corp, Norcross, GA, USA. [Google Scholar]
  • Weller H. (1993) Colloidal Semiconductor Q-Particles - Chemistry in the Transition Region between Solid-State and Molecules, Angew. Chem. Int. Ed. 32, 1, 41–53. [CrossRef] [Google Scholar]
  • Brus L.E. (1984) Electron–electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state, J. Chem. Phys. 80, 9, 4403. [CrossRef] [Google Scholar]
  • Calandra P., Goffredi M., Liveri V.T. (1999) Study of the growth of ZnS nanoparticles in water/AOT/n-heptane microemulsions by UV-absorption spectroscopy, Colloid Surf. A 160, 1, 9–13. [CrossRef] [Google Scholar]
  • Manyar H.G., Iliade P., Bertinetti L., Coluccia S., Berlier G. (2011) Structural and spectroscopic investigation of ZnS nanoparticles grown in quaternary reverse micelles, J. Colloid Interface Sci. 354, 2, 511–516. [CrossRef] [PubMed] [Google Scholar]
  • Grozdanov I., Najdoski M. (1995) Optical and electrical-properties of copper sulfide films of variable composition, J. Solid State Chem. 1142, 469–475. [CrossRef] [Google Scholar]
  • Saravanan R.S.S., Pukazhselvan D., Mahadevan C.K. (2012) Studies on the synthesis of cubic ZnS quantum dots, capping and optical-electrical characteristics, J. Alloys Compd. 517, 139–148. [CrossRef] [Google Scholar]
  • Amirtharaj P.M., Seiler D.G. (2009) Optical properties of semiconductors, in Handbook of Optics, McGraw Hill, New York, NY. [Google Scholar]
  • Dovesi R., Saunders V.R., Roetti C., Orlando R., Zicovich-Wilson C.M., Pascale F., Civalleri B., Doll K., Harrison N.M., Bush I.J., et al. CRYSTAL09 User’s Manual, University of Torino. [Google Scholar]
  • Becke A.D. (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior, Phys. Rev. A 38, 6, 3098–3100. [Google Scholar]
  • Perdew J.P., Wang Y. (1992) Accurate and simple analytic representation of the electron-gas correlation-energy, Phys. Rev. B 45, 23, 13244–13249. [NASA ADS] [CrossRef] [Google Scholar]
  • Adamo C., Barone V. (1999) J. Chem. Phys. 110, 6158–6170. [NASA ADS] [CrossRef] [Google Scholar]
  • Stevens W.J., Krauss M., Bash H., Jaisen P.G. (1992) Can. J. Chem. 70, 612–630. [CrossRef] [Google Scholar]
  • Mino L., Ferrari A.M., Lacivita V., Spoto G., Bordiga S., Zecchina A. (2011) CO Adsorption on Anatase Nanocrystals: A Combined Experimental and Periodic DFT Study, J. Phys. Chem. C 115, 15, 7694–7700. [CrossRef] [Google Scholar]
  • Mino L., Spoto G., Ferrari A.M. (2014) CO2 Capture by TiO2 Anatase Surfaces: A Combined DFT and FTIR Study, J. Phys. Chem. C 118, 43, 25016–25026. [CrossRef] [Google Scholar]
  • Hamad S., Catlow C.R.A. (2006) Computational study of the relative stabilities of ZnS clusters, for sizes between 1 and 4 nm, J. Cryst. Growth 294, 1, 2–8. [CrossRef] [Google Scholar]
  • Hamad S., Catlow C.R.A., Spano E., Matxain J.M., Ugalde J.M. (2005) Structure and properties of ZnS nanoclusters, J. Phys. Chem. B 109, 7, 2703–2709. [CrossRef] [PubMed] [Google Scholar]
  • Hamad S., Cristol S., Catlow C.R.A. (2005) Simulation of the embryonic stage of ZnS formation from aqueous solution, J. Am. Chem. Soc. 127, 8, 2580–2590. [CrossRef] [PubMed] [Google Scholar]
  • Hamad S., Woodley S.M., Catlow C.R.A. (2009) Experimental and computational studies of ZnS nanostructures, Mol. Simul. 35, 12-13, 1015–1032. [CrossRef] [Google Scholar]
  • Boys S.F., Bernardi F. (1970) The calculation of small molecular interaction by the difference of separate total energies. Some procedures with reduced errors, Mol. Phys. 19, 553–566. [NASA ADS] [CrossRef] [Google Scholar]
  • Murugadoss G. (2011) Synthesis, optical, structural and thermal characterization of Mn2+ doped ZnS nanoparticles using reverse micelle method, J. Lumin. 131, 10, 2216–2223. [CrossRef] [Google Scholar]
  • Wang L., Zhao C., Meng F., Huang S., Yuan X., Xu X., Yang Z., Yang H. (2010) Optical properties and simultaneous synthesis of ZnS and ZnO nanoparticles via one reverse micellar system, Colloid Surf. A 360, 1-3, 205–209. [CrossRef] [Google Scholar]
  • Emin S., Lisjak D., Pitcher M., Valant M. (2013) Structural and morphological transformations of textural porous zinc sulfide microspheres, Microporous Mesoporous Mater. 165, 185–192. [CrossRef] [Google Scholar]
  • Socrates G. (2006) Infrared and Raman characteristic group frequencies, John Wiley & Sons Ltd, Chichester, England. [Google Scholar]
  • Rosenthal D., Taylor T.I. (1957) A Study of the Mechanism and Kinetics of the Thioacetamide Hydrolysis Reaction, J. Am. Chem. Soc. 79, 11, 2684–2690. [CrossRef] [Google Scholar]
  • Gunning H.E. (1955) Thioacetamide as a Sulfide Presipitant in Qualitative and Quantitative Analysis, J. Chem. Educ. 32, 5, 258–259. [CrossRef] [Google Scholar]
  • Siriwardane R.V., Woodruff S. (1997) In situ Fourier transform infrared characterization of sulfur species resulting from the reaction of water vapor and oxygen with zinc sulfide, Ind. Eng. Chem. Res. 36, 12, 5277–5281. [CrossRef] [Google Scholar]
  • Tasker P.W. (1979) J. Phys. Chem. 12, 4977. [Google Scholar]
  • Goniakowski J., Finocchi F., Noguera C. (2008) Polarity of oxide surfaces and nanostructures, Rep. Prog. Phys. 71, 016501. [CrossRef] [Google Scholar]
  • Alivisatos A.P. (1996) Semiconductor clusters, nanocrystals, and quantum dots, Science 271, 5251, 933–937. [CrossRef] [Google Scholar]
  • Brus L. (1986) Electronic Wave Functions in Semiconductor Clusters: Experiment and Theory, J. Phys. Chem. 90, 2255–2560. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.