IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Open Access
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 5, September–October 2015
IFP Energies nouvelles International Conference: PHOTO4E – Photocatalysis for energy
Page(s) 831 - 839
DOI https://doi.org/10.2516/ogst/2015025
Publié en ligne 29 septembre 2015
  • Rossetti I. (2012) Hydrogen Production by Photoreforming of Renewable Substrates, ISRN Chemical Engineering 2012, 21. [CrossRef] [Google Scholar]
  • Chiarello G.L., Forni L., Selli E. (2009) Photocatalytic hydrogen production by liquid- and gas-phase reforming of CH3OH over flame-made TiO2 and Au/TiO2 , Catalysis Today 144, 69–74. [CrossRef] [Google Scholar]
  • Gombac V., Sordelli L., Montini T., Delgado J.J., Adamski A., Adami G., Cargnello M., Bernal S., Fornasiero P. (2009) CuOx−TiO2 Photocatalysts for H2 Production from Ethanol and Glycerol Solutions, The Journal of Physical Chemistry A 114, 3916–3925. [CrossRef] [Google Scholar]
  • Wu G., Chen T., Su W., Zhou G., Zong X., Lei Z., Li C. (2008) H2 production with ultra-low CO selectivity via photocatalytic reforming of methanol on Au/TiO2 catalyst, International Journal of Hydrogen Energy 33, 1243–1251. [CrossRef] [Google Scholar]
  • Al-Mazroai L.S., Bowker M., Davies P., Dickinson A., Greaves J., James D., Millard L. (2007) The photocatalytic reforming of methanol, Catalysis Today 122, 46–50. [CrossRef] [Google Scholar]
  • Taylor C. (2005) Photocatalytic conversion of methane contained in methane hydrates, Top Catal. 32, 179–184. [CrossRef] [Google Scholar]
  • Xu S., Sun D.D. (2009) Significant improvement of photocatalytic hydrogen generation rate over TiO2 with deposited CuO, International Journal of Hydrogen Energy 34, 6096–6104. [CrossRef] [Google Scholar]
  • Yoshida H., Hirao K., Nishimoto J.-i., Shimura K., Kato S., Itoh H., Hattori T. (2008) Hydrogen Production from Methane and Water on Platinum Loaded Titanium Oxide Photocatalysts, The Journal of Physical Chemistry C 112, 5542–5551. [CrossRef] [Google Scholar]
  • Chiarello G.L., Selli E., Forni L. (2008) Photocatalytic hydrogen production over flame spray pyrolysis-synthesised TiO2 and Au/TiO2, Applied Catalysis B: Environmental 84, 332–339. [CrossRef] [Google Scholar]
  • Zalas M., Laniecki M. (2005) Photocatalytic hydrogen generation over lanthanides-doped titania, Solar Energy Materials and Solar Cells 89, 287–296. [CrossRef] [Google Scholar]
  • Lalitha K., Reddy J.K., Phanikrishna Sharma M.V., Kumari V.D., Subrahmanyam M. (2010) Continuous hydrogen production activity over finely dispersed Ag2O/TiO2 catalysts from methanol:water mixtures under solar irradiation: A structure–activity correlation, International Journal of Hydrogen Energy 35, 3991–4001. [CrossRef] [Google Scholar]
  • Oros-Ruiz S., Zanella R., López R., Hernández-Gordillo A., Gómez R. (2013) Photocatalytic hydrogen production by water/methanol decomposition using Au/TiO2 prepared by deposition–precipitation with urea, Journal of Hazardous Materials 263, 1, 2–10. [CrossRef] [PubMed] [Google Scholar]
  • Chen W.-T., Jovic V., Sun-Waterhouse D., Idriss H., Waterhouse G.I.N. (2013) The role of CuO in promoting photocatalytic hydrogen production over TiO2 , International Journal of Hydrogen Energy 38, 15036–15048. [CrossRef] [Google Scholar]
  • Onsuratoom S., Puangpetch T., Chavadej S. (2011) Comparative investigation of hydrogen production over Ag-, Ni-, and Cu-loaded mesoporous-assembled TiO2–ZrO2 mixed oxide nanocrystal photocatalysts, Chemical Engineering Journal 173, 667–675. [CrossRef] [Google Scholar]
  • Holliday S.T.R., (2003) Gold Reference Catalyst, Gold Bulletin 36, 1, 24. [CrossRef] [Google Scholar]
  • Dickinson A., James D., Perkins N., Cassidy T., Bowker M. (1999) The photocatalytic reforming of methanol, Journal of Molecular Catalysis A: Chemical 146, 211–221. [CrossRef] [Google Scholar]
  • Takanabe K., Nagaoka K., Nariai K., Aika K.-i. (2005) Influence of reduction temperature on the catalytic behavior of Co/TiO2 catalysts for CH4/CO2 reforming and its relation with titania bulk crystal structure, Journal of Catalysis 230, 75–85. [CrossRef] [Google Scholar]
  • Sreethawong T., Yoshikawa S. (2005) Comparative investigation on photocatalytic hydrogen evolution over Cu-, Pd-, and Au-loaded mesoporous TiO2 photocatalysts, Catalysis Communications 6, 661–668. [CrossRef] [Google Scholar]
  • Wu N.-L., Lee M.-S., Pon Z.-J., Hsu J.-Z. (2004) Effect of calcination atmosphere on TiO2 photocatalysis in hydrogen production from methanol/water solution, Journal of Photochemistry and Photobiology A: Chemistry 163, 277–280. [CrossRef] [Google Scholar]
  • Raj K.J.A., Viswanathan B. (2009) Effect of surface area pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian J. Chem. A 48, 1378–1382. [Google Scholar]
  • Xu B., Dong L., Chen Y. (1998) Influence of CuO loading on dispersion and reduction behavior of CuO/TiO2 (anatase) system, Journal of the Chemical Society Faraday Transactions 94, 1905–1909. [CrossRef] [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.