IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Open Access
Issue
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Number 1, January–February 2015
IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Page(s) 111 - 123
Section Engines & Fuels
DOI https://doi.org/10.2516/ogst/2013199
Published online 03 April 2014
  • Brehob D.D., Newman C.E. (1992) Monte Carlo Simulation of Cycle by Cycle Variability, SAE Paper 922165. [Google Scholar]
  • Ozdor N., Dulger M., Sher E. (1994) Cyclic Variability in Spark Ignition Engines. A Literature Survey, SAE Paper 940987. [Google Scholar]
  • Karvountzis-Kontakiotis A., Ntziachristos L. (2012) A detailed chemical mechanism to predict NO cycle-to-cycle variation in homogeneous engine combustion, IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, IFP Energies nouvelles, France, 23-25 Oct. [Google Scholar]
  • Ball J.K., Raine R.R., Stone C.R. (1998) Combustion analysis and cycle-by-cycle variations in spark ignition engine combustion Part 2: A new parameter for completeness of combustion and its use in modelling cycle-by-cycle variations in combustion, Proceeding of the institution of Mechanical Enginees, Part D: Journal of Automobile Engineering June 1 212, 6, 507–523. [CrossRef] [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw-Hill, Singapore. [Google Scholar]
  • Young M.B. (1981) Cyclic Dispersion in the Homogeneous-Charge Spark-Ignition - A Literature Survey, SAE Paper 810020. [Google Scholar]
  • Stone C.R., Brown A.G., Beckwith P. (1996) Cycle-by-Cycle Variations in Spark Ignition Engine Combustion – Part II: Modelling of Flame Kernel Displacements as a Cause of Cycle-by-Cycle Variations, SAE Paper 960613. [Google Scholar]
  • Johansson B. (1996) Cycle-to-Cycle Variations in S.I. Engines – The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion, SAE Paper 962084. [Google Scholar]
  • Whitelaw J.H., Xu H.M. (1995) Cyclic Variations in a Lean-Burn Spark Ignition Engine Without and With Swirl, SAE Paper 950683. [Google Scholar]
  • Fox W.J., Cheng K.W., Heywood B.J. (1993) A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines, SAE Paper 931025. [Google Scholar]
  • Hamai K., Kawajiri H., Ishizuka T., Nakai M. (1988) Combustion Fluctuation Mechanism Involving Cycle-to-Cycle Spark Ignition Variation Due to Gas Flow Motion in S.I. Engines, 21st Int. Symposium on Combustion 21, 505–512. [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combustion and Flame 156, 1525–1541. [Google Scholar]
  • Lacour C., Pera C. (2011) An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES, SAE Paper 2011-01-1282. [Google Scholar]
  • Martin J., Witze P., Borgnakke C. (1985) Combustion Effects on the Preflame Flow Field in a Research Engine, SAE Paper 850122. [Google Scholar]
  • Matekunas F. (1983) Modes and Measures of Cyclic Combustion Variability, SAE Paper 830337. [Google Scholar]
  • Shen H., Hinze P., Heywood J. (1996) A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model, SAE Paper 961187. [Google Scholar]
  • Watson C.H., Goldsworthly C.L., Milkins E.E. (1976) Cycle-by-Cycle Variations of HC, CO., and NOx, SAE Paper 760753. [Google Scholar]
  • Ball K.J., Bowe J.M., Stone C.R., Collings N. (2001) Validation of a Cyclic NO Formation Model with Fast NO Measurements, SAE Paper 2001-01-1010. [Google Scholar]
  • Jante A. (1960) Das Wiebe-Brenngesetz; ein Fortschritt in der Thermodynamik der Kreisprozesse von Verbrennungsmotoren, Kraftfahrzeugtechnik 9, 340–346. [Google Scholar]
  • Stiesch G. (2003) Modeling Engine Spray and Combustion Processes, Springer, Berlin. [CrossRef] [Google Scholar]
  • Duclos J.-M., Zolver M., Baritaud T. (1999) 3D Modeling of Combustion for DI-SI Engines, Oil & Gas Science and Technology 54, 2, 259–264. [Google Scholar]
  • Richard S., Bougrine S., Font G., Lafossas F.-A., Le Berr F. (2009) On the Reduction of a 3D CFD Combustion Model to Build a Physical 0D Model for Simulating Heat Release, Knock and Pollutants in SI Engines, Oil & Gas Science and Technology 64, 3, 223–242. [Google Scholar]
  • Heywood J.B., Higgins J.M., Watts P.A., Tabaczynski R.J. (1979) Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions, SAE Paper 790291. [Google Scholar]
  • Pattas K., Häfner G. (1973) Stichoxidbildung bei der ottomotorichen Verbrennung, MTZ, Nr. 12. [Google Scholar]
  • Bachmaier F., Eberius K.H., Just T.H. (1973) The formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon – Air Flames at 1 Atmosphere, Combustion Science and Technology 7, 77–84. [CrossRef] [Google Scholar]
  • Lutz A.E., Kee R.J., Miller J.A. (1988) Senkin: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, SAND87-8248. [Google Scholar]
  • Glassman I., Richard A.Y. (2008) Combustion, Academic Press, California, USA. [Google Scholar]
  • Kergin U. (2002) Study on the prediction of the effects of design and operating parameters on NOx emissions from a leanburn natural gas engine, Energy Conversion and Management 44, 907–921. [Google Scholar]
  • Shuemie A., Fairbrother R., Pötsch Ch, Tatschl R. (2011) LESSCCV Project Meeting, Milano, WP4. [Google Scholar]
  • Merker G.P., Schwarz C., Stiesch G., Otto F. (2004) Simulation of combustion and pollutant formation for engine-development, Springer. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.