IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Open Access
Numéro
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 70, Numéro 1, January–February 2015
IFP Energies nouvelles International Conference: E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
Page(s) 111 - 123
Section Engines & Fuels
DOI https://doi.org/10.2516/ogst/2013199
Publié en ligne 3 avril 2014
  • Brehob D.D., Newman C.E. (1992) Monte Carlo Simulation of Cycle by Cycle Variability, SAE Paper 922165. [Google Scholar]
  • Ozdor N., Dulger M., Sher E. (1994) Cyclic Variability in Spark Ignition Engines. A Literature Survey, SAE Paper 940987. [Google Scholar]
  • Karvountzis-Kontakiotis A., Ntziachristos L. (2012) A detailed chemical mechanism to predict NO cycle-to-cycle variation in homogeneous engine combustion, IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, IFP Energies nouvelles, France, 23-25 Oct. [Google Scholar]
  • Ball J.K., Raine R.R., Stone C.R. (1998) Combustion analysis and cycle-by-cycle variations in spark ignition engine combustion Part 2: A new parameter for completeness of combustion and its use in modelling cycle-by-cycle variations in combustion, Proceeding of the institution of Mechanical Enginees, Part D: Journal of Automobile Engineering June 1 212, 6, 507–523. [CrossRef] [Google Scholar]
  • Heywood J.B. (1988) Internal Combustion Engine Fundamentals, McGraw-Hill, Singapore. [Google Scholar]
  • Young M.B. (1981) Cyclic Dispersion in the Homogeneous-Charge Spark-Ignition - A Literature Survey, SAE Paper 810020. [Google Scholar]
  • Stone C.R., Brown A.G., Beckwith P. (1996) Cycle-by-Cycle Variations in Spark Ignition Engine Combustion – Part II: Modelling of Flame Kernel Displacements as a Cause of Cycle-by-Cycle Variations, SAE Paper 960613. [Google Scholar]
  • Johansson B. (1996) Cycle-to-Cycle Variations in S.I. Engines – The Effects of Fluid Flow and Gas Composition in the Vicinity of the Spark Plug on Early Combustion, SAE Paper 962084. [Google Scholar]
  • Whitelaw J.H., Xu H.M. (1995) Cyclic Variations in a Lean-Burn Spark Ignition Engine Without and With Swirl, SAE Paper 950683. [Google Scholar]
  • Fox W.J., Cheng K.W., Heywood B.J. (1993) A Model for Predicting Residual Gas Fraction in Spark-Ignition Engines, SAE Paper 931025. [Google Scholar]
  • Hamai K., Kawajiri H., Ishizuka T., Nakai M. (1988) Combustion Fluctuation Mechanism Involving Cycle-to-Cycle Spark Ignition Variation Due to Gas Flow Motion in S.I. Engines, 21st Int. Symposium on Combustion 21, 505–512. [CrossRef] [Google Scholar]
  • Vermorel O., Richard S., Colin O., Angelberger C., Benkenida A., Veynante D. (2009) Towards the understanding of cyclic variability in a spark ignited engine using multi-cycle LES, Combustion and Flame 156, 1525–1541. [Google Scholar]
  • Lacour C., Pera C. (2011) An Experimental Database Dedicated to the Study and Modelling of Cyclic Variability in Spark-Ignition Engines with LES, SAE Paper 2011-01-1282. [Google Scholar]
  • Martin J., Witze P., Borgnakke C. (1985) Combustion Effects on the Preflame Flow Field in a Research Engine, SAE Paper 850122. [Google Scholar]
  • Matekunas F. (1983) Modes and Measures of Cyclic Combustion Variability, SAE Paper 830337. [Google Scholar]
  • Shen H., Hinze P., Heywood J. (1996) A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model, SAE Paper 961187. [Google Scholar]
  • Watson C.H., Goldsworthly C.L., Milkins E.E. (1976) Cycle-by-Cycle Variations of HC, CO., and NOx, SAE Paper 760753. [Google Scholar]
  • Ball K.J., Bowe J.M., Stone C.R., Collings N. (2001) Validation of a Cyclic NO Formation Model with Fast NO Measurements, SAE Paper 2001-01-1010. [Google Scholar]
  • Jante A. (1960) Das Wiebe-Brenngesetz; ein Fortschritt in der Thermodynamik der Kreisprozesse von Verbrennungsmotoren, Kraftfahrzeugtechnik 9, 340–346. [Google Scholar]
  • Stiesch G. (2003) Modeling Engine Spray and Combustion Processes, Springer, Berlin. [CrossRef] [Google Scholar]
  • Duclos J.-M., Zolver M., Baritaud T. (1999) 3D Modeling of Combustion for DI-SI Engines, Oil & Gas Science and Technology 54, 2, 259–264. [Google Scholar]
  • Richard S., Bougrine S., Font G., Lafossas F.-A., Le Berr F. (2009) On the Reduction of a 3D CFD Combustion Model to Build a Physical 0D Model for Simulating Heat Release, Knock and Pollutants in SI Engines, Oil & Gas Science and Technology 64, 3, 223–242. [Google Scholar]
  • Heywood J.B., Higgins J.M., Watts P.A., Tabaczynski R.J. (1979) Development and Use of a Cycle Simulation to Predict SI Engine Efficiency and NOx Emissions, SAE Paper 790291. [Google Scholar]
  • Pattas K., Häfner G. (1973) Stichoxidbildung bei der ottomotorichen Verbrennung, MTZ, Nr. 12. [Google Scholar]
  • Bachmaier F., Eberius K.H., Just T.H. (1973) The formation of Nitric Oxide and the Detection of HCN in Premixed Hydrocarbon – Air Flames at 1 Atmosphere, Combustion Science and Technology 7, 77–84. [CrossRef] [Google Scholar]
  • Lutz A.E., Kee R.J., Miller J.A. (1988) Senkin: A FORTRAN program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis, SAND87-8248. [Google Scholar]
  • Glassman I., Richard A.Y. (2008) Combustion, Academic Press, California, USA. [Google Scholar]
  • Kergin U. (2002) Study on the prediction of the effects of design and operating parameters on NOx emissions from a leanburn natural gas engine, Energy Conversion and Management 44, 907–921. [Google Scholar]
  • Shuemie A., Fairbrother R., Pötsch Ch, Tatschl R. (2011) LESSCCV Project Meeting, Milano, WP4. [Google Scholar]
  • Merker G.P., Schwarz C., Stiesch G., Otto F. (2004) Simulation of combustion and pollutant formation for engine-development, Springer. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.