Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 479 - 488
Published online 01 January 2007
  • Tanabe, K. and Hoelderich, W.F. (1999) Industrial applications of solid acid-base catalysts. Appl. Catal. A–Gen., 181, 399. [Google Scholar]
  • Lavalley, J.C. (1996) Infra-red spectroscopic studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today, 27, 377. [CrossRef] [Google Scholar]
  • Aramendia, M.A., Borau, V., Jimenez, C., Marinas, A., Marinas, J.M. and Urbano, F. (2002) Isomerization of 3-phenyl-1-propene (alkylbenzene) over base catalysts. J. Catal., 211, 556. [Google Scholar]
  • Brønsted, J.N. (1923) Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pay.-B., 242, 718. [Google Scholar]
  • Chizallet, C., Bailly, M.L., Costentin, G., Lauron-Pernot, H., Krafft, J.M., Bazin, P., Saussey, J. and Che, M. (2006) Thermodynamic Brønsted basicity of clean MgO surfaces determined by their deprotonation ability: role of Mg2+-O2- pairs. Catal. Today, in press. [Google Scholar]
  • Bailly, M.L.,Chizallet, C.,Costentin, G.,Krafft, J.M.,Lauron-Pernot, H. and Che, M. (2005) A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: Thermodynamic Brønsted basicity versus reactivity of basic sites. J. Catal., 235, 413. [CrossRef] [Google Scholar]
  • Handa, H.,Fu, Y.,Baba, T. and Ono, Y. (1999) Characterization of strong solid bases by test reactions. Catal. Lett., 59, 195. [CrossRef] [Google Scholar]
  • Hattori, H. (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl. Catal. A–Gen., 222, 247. [CrossRef] [MathSciNet] [Google Scholar]
  • Che, M. and Tench, A.J. (1980) Characterization and reactivity of mononuclear oxygen species on oxide surfaces. AERE Report – R 9971. Adv. Catal., 31 (1982), 77. [Google Scholar]
  • Lauron-Pernot, H.,Luck, F. and Popa, J.M. (1991) Methylbutynol: a new and simple diagnostic tool for acidic and basic sites of solids. Appl. Catal. A–Gen., 78, 213. [CrossRef] [Google Scholar]
  • Zhang, G.,Hattori, H. and Tanabe, K. (1988) Aldol addition of acetone, catalyzed by solid base catalysts: magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum (III) oxide and zirconium oxide. Appl. Catal., 36, 189. [CrossRef] [Google Scholar]
  • Hoq, M.F.,Nieves, I. and Klabunde, K.J. (1990) Mechanistic studies of hydrocarbon CH/deuterium exchange over thermally activated magnesium oxide. J. Catal., 123, 349. [CrossRef] [Google Scholar]
  • Chizallet, C., Costentin, G., Che, M., Delbecq, F. and Sautet, P. (2006) Infra-red characterization of hydroxyl groups on MgO: a periodic DFT study (in preparation). [Google Scholar]
  • Giordano, L.,Goniakowski, J. and Suzanne, J. (1998) Partial dissociation of water molecules in the (3 x 2) water monolayer deposited on the MgO(100) surface. Phys. Rev. Lett., 81, 1271. [CrossRef] [Google Scholar]
  • Odelius, M. (1999) Mixed molecular and dissociative water adsorption on MgO(100). Phys. Rev. Lett., 82, 3919. [CrossRef] [Google Scholar]
  • Finocchi, F. and Goniakowski, J. (2001) Interaction of a water molecule with the oxygen vacancy on the MgO(100) surface. Phys. Rev. B, 64, 125426. [CrossRef] [Google Scholar]
  • Sitte, L.D.,Alavi, A. and Lynden-Bell, R.M. (2000) The structure and spectroscopy of monolayers of water on MgO. An ab initio study. J. Chem. Phys., 113, 3344. [CrossRef] [Google Scholar]
  • Lynden-Bell, R.M.,Sitte, L.D. and Alavi, A. (2002) Structures of adsorbed water layers on MgO. An ab initio study. Surf. Sci., 496, L1. [CrossRef] [Google Scholar]
  • Kim, Y.D.,Lynden-Bell, R.M.,Alavi, A.,Stultz, J. and Goodman, D.W. (2002) Evidence for partial dissociation of water on flat MgO(100) surfaces. Chem. Phys. Lett., 352, 318. [CrossRef] [Google Scholar]
  • Giordano, L.,Goniakowski, J. and Suzanne, J. (2000) Reversibility of water dissociation on the MgO(100) surface. Phys. Rev. B, 62, 15406. [CrossRef] [Google Scholar]
  • Kim, Y.D.,Stultz, J. and Goodman, D.W. (2002) Dissociation of water on MgO(100). J. Phys. Chem. B, 106, 1515. [CrossRef] [Google Scholar]
  • Yu, Y.,Guo, Q.,Wang, E. and Möller, P.J. (2003) Partial dissociation on a MgO(100) thin film. Phys. Rev. B, 68, 115414. [CrossRef] [Google Scholar]
  • Stimiman, M.J., Huang, C., ScottSmith, R.,Joyce, S.A. and Kay, B.D. (1996) The adsorption and desorption of water on single crystal MgO(100): the role of surface defects. J. Chem. Phys., 105, 1295. [CrossRef] [Google Scholar]
  • Bailly, M.L.,Costentin, G.,Lauron-Pernot, H.,Krafft, J.M. and Che, M. (2005) Physicochemical and in situ photoluminescence study of the reversible transformation of oxide ions of low coordination into hydroxyl groups upon interaction of water and methanol with MgO. J. Phys. Chem. B, 109, 2404. [CrossRef] [PubMed] [Google Scholar]
  • Perdew, J. and Wang, Y. (1992) Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B, 45, 13244. [NASA ADS] [CrossRef] [Google Scholar]
  • Kresse, G. and Hafner, J. (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 49, 14251. [Google Scholar]
  • Kresse, G. and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6, 15. [Google Scholar]
  • Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758. [Google Scholar]
  • Loffreda, D. (1999) Modélisation théorique de l'adsorption et de la réactivité de la molécule NO sur les surfaces de catalyseurs à base de palladium, de rhodium et d'alliage palladiummanganèse. Thesis, Université Claude Bernard-Lyon I. [Google Scholar]
  • Loffreda, D.,Simon, D. and Sautet, P. (1998) Vibrational frequency and chemisorption site: a DFT-periodic study of NO on Pd(111) and Rh(111) surfaces. Chem. Phys. Lett., 291, 15. [CrossRef] [Google Scholar]
  • Bensitel, M.,Saur, O. and Lavalley, J.C. (1991) Use of methanol as a probe to study the adsorption sites of different MgO samples. Mater. Chem. Phys., 28, 309. [CrossRef] [Google Scholar]
  • Huber, S. and Knözinger, H. (1999) Adsorption of CH-acids on magnesia. A FTIR-spectroscopic study. J. Mol. Catal. AChem., 141, 117. [CrossRef] [Google Scholar]
  • Iizuka, T.,Hattori, H.,Ohno, Y.,Sohma, J. and Tanabe, K. (1971) Basic sites and reducing sites of calcium oxide and their catalytic activities. J. Catal., 22, 130. [CrossRef] [Google Scholar]
  • Knözinger, E.,Jacob, K.H.,Singh, S. and Hofmann, P. (1993) Hydroxyl groups as IR active surface probes on MgO crystallites. Surf. Sci., 290, 388. [CrossRef] [Google Scholar]
  • Anderson, P.J.,Horlock, R.F. and Olivier, J.F. (1965) Interaction of water with the magnesium oxide surface. T. Faraday Soc., 61, 2754. [CrossRef] [Google Scholar]
  • Tsyganenko, A.A. and Filimonov, V.N. (1973) Infra-red spectra of surface hydroxyl groups and crystalline structure of oxides. J. Mol. Struct., 19, 579. [CrossRef] [Google Scholar]
  • Shido, T.,Asakura, K. and Iwasawa, Y. (1989) The hydrogen exchange reaction of surface deuteroxyl groups on MgO with H2. J. Chem. Soc. Faraday T., 85, 441. [CrossRef] [Google Scholar]
  • Coluccia, S.,Marchese, L.,Lavagnino, S. and Anpo, M. (1987) Hydroxyls on the surface of MgO powders. Spectrochim. Acta A, 43, 1573. [CrossRef] [Google Scholar]
  • Coluccia, S.,Lavagnino, S. and Marchese, L. (1988) The hydroxylated surface of magnesium oxide powders and the formation of surface sites. Mat. Chem. Phys., 18, 445. [CrossRef] [Google Scholar]
  • Morrow, B.A. (1990) Surface groups on oxides. Stud. Surf. Sci. Catal., 57, 161. [CrossRef] [Google Scholar]
  • Chizallet, C., Costentin, G., Che, M., Delbecq, F. and Sautet, P. (2006) Revisiting acido-basicity of MgO surface by periodic DFT calculations: role of surface topology and ion coordination on water dissociation (submitted). [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.