Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 479 - 488
Published online 01 January 2007
  • Tanabe, K. and Hoelderich, W.F. (1999) Industrial applications of solid acid-base catalysts. Appl. Catal. A–Gen., 181, 399. [CrossRef] [MathSciNet]
  • Lavalley, J.C. (1996) Infra-red spectroscopic studies of the surface basicity of metal oxides and zeolites using adsorbed probe molecules. Catal. Today, 27, 377. [CrossRef]
  • Aramendia, M.A., Borau, V., Jimenez, C., Marinas, A., Marinas, J.M. and Urbano, F. (2002) Isomerization of 3-phenyl-1-propene (alkylbenzene) over base catalysts. J. Catal., 211, 556.
  • Brønsted, J.N. (1923) Einige Bemerkungen über den Begriff der Säuren und Basen. Recl. Trav. Chim. Pay.-B., 242, 718.
  • Chizallet, C., Bailly, M.L., Costentin, G., Lauron-Pernot, H., Krafft, J.M., Bazin, P., Saussey, J. and Che, M. (2006) Thermodynamic Brønsted basicity of clean MgO surfaces determined by their deprotonation ability: role of Mg2+-O2- pairs. Catal. Today, in press.
  • Bailly, M.L.,Chizallet, C.,Costentin, G.,Krafft, J.M.,Lauron-Pernot, H. and Che, M. (2005) A spectroscopy and catalysis study of the nature of active sites of MgO catalysts: Thermodynamic Brønsted basicity versus reactivity of basic sites. J. Catal., 235, 413. [CrossRef]
  • Handa, H.,Fu, Y.,Baba, T. and Ono, Y. (1999) Characterization of strong solid bases by test reactions. Catal. Lett., 59, 195. [CrossRef]
  • Hattori, H. (2001) Solid base catalysts: generation of basic sites and application to organic synthesis. Appl. Catal. A–Gen., 222, 247. [CrossRef] [MathSciNet]
  • Che, M. and Tench, A.J. (1980) Characterization and reactivity of mononuclear oxygen species on oxide surfaces. AERE Report – R 9971. Adv. Catal., 31 (1982), 77.
  • Lauron-Pernot, H.,Luck, F. and Popa, J.M. (1991) Methylbutynol: a new and simple diagnostic tool for acidic and basic sites of solids. Appl. Catal. A–Gen., 78, 213. [CrossRef]
  • Zhang, G.,Hattori, H. and Tanabe, K. (1988) Aldol addition of acetone, catalyzed by solid base catalysts: magnesium oxide, calcium oxide, strontium oxide, barium oxide, lanthanum (III) oxide and zirconium oxide. Appl. Catal., 36, 189. [CrossRef]
  • Hoq, M.F.,Nieves, I. and Klabunde, K.J. (1990) Mechanistic studies of hydrocarbon CH/deuterium exchange over thermally activated magnesium oxide. J. Catal., 123, 349. [CrossRef]
  • Chizallet, C., Costentin, G., Che, M., Delbecq, F. and Sautet, P. (2006) Infra-red characterization of hydroxyl groups on MgO: a periodic DFT study (in preparation).
  • Giordano, L.,Goniakowski, J. and Suzanne, J. (1998) Partial dissociation of water molecules in the (3 x 2) water monolayer deposited on the MgO(100) surface. Phys. Rev. Lett., 81, 1271. [CrossRef]
  • Odelius, M. (1999) Mixed molecular and dissociative water adsorption on MgO(100). Phys. Rev. Lett., 82, 3919. [CrossRef]
  • Finocchi, F. and Goniakowski, J. (2001) Interaction of a water molecule with the oxygen vacancy on the MgO(100) surface. Phys. Rev. B, 64, 125426. [CrossRef]
  • Sitte, L.D.,Alavi, A. and Lynden-Bell, R.M. (2000) The structure and spectroscopy of monolayers of water on MgO. An ab initio study. J. Chem. Phys., 113, 3344. [CrossRef]
  • Lynden-Bell, R.M.,Sitte, L.D. and Alavi, A. (2002) Structures of adsorbed water layers on MgO. An ab initio study. Surf. Sci., 496, L1. [CrossRef]
  • Kim, Y.D.,Lynden-Bell, R.M.,Alavi, A.,Stultz, J. and Goodman, D.W. (2002) Evidence for partial dissociation of water on flat MgO(100) surfaces. Chem. Phys. Lett., 352, 318. [CrossRef]
  • Giordano, L.,Goniakowski, J. and Suzanne, J. (2000) Reversibility of water dissociation on the MgO(100) surface. Phys. Rev. B, 62, 15406. [CrossRef]
  • Kim, Y.D.,Stultz, J. and Goodman, D.W. (2002) Dissociation of water on MgO(100). J. Phys. Chem. B, 106, 1515. [CrossRef]
  • Yu, Y.,Guo, Q.,Wang, E. and Möller, P.J. (2003) Partial dissociation on a MgO(100) thin film. Phys. Rev. B, 68, 115414. [CrossRef]
  • Stimiman, M.J., Huang, C., ScottSmith, R.,Joyce, S.A. and Kay, B.D. (1996) The adsorption and desorption of water on single crystal MgO(100): the role of surface defects. J. Chem. Phys., 105, 1295. [CrossRef]
  • Bailly, M.L.,Costentin, G.,Lauron-Pernot, H.,Krafft, J.M. and Che, M. (2005) Physicochemical and in situ photoluminescence study of the reversible transformation of oxide ions of low coordination into hydroxyl groups upon interaction of water and methanol with MgO. J. Phys. Chem. B, 109, 2404. [CrossRef] [PubMed]
  • Perdew, J. and Wang, Y. (1992) Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B, 45, 13244. [CrossRef]
  • Kresse, G. and Hafner, J. (1994) Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B, 49, 14251. [NASA ADS] [CrossRef]
  • Kresse, G. and Furthmüller, J. (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mat. Sci., 6, 15. [CrossRef] [MathSciNet]
  • Kresse, G. and Joubert, D. (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B, 59, 1758. [NASA ADS] [CrossRef]
  • Loffreda, D. (1999) Modélisation théorique de l'adsorption et de la réactivité de la molécule NO sur les surfaces de catalyseurs à base de palladium, de rhodium et d'alliage palladiummanganèse. Thesis, Université Claude Bernard-Lyon I.
  • Loffreda, D.,Simon, D. and Sautet, P. (1998) Vibrational frequency and chemisorption site: a DFT-periodic study of NO on Pd(111) and Rh(111) surfaces. Chem. Phys. Lett., 291, 15. [CrossRef]
  • Bensitel, M.,Saur, O. and Lavalley, J.C. (1991) Use of methanol as a probe to study the adsorption sites of different MgO samples. Mater. Chem. Phys., 28, 309. [CrossRef]
  • Huber, S. and Knözinger, H. (1999) Adsorption of CH-acids on magnesia. A FTIR-spectroscopic study. J. Mol. Catal. AChem., 141, 117. [CrossRef]
  • Iizuka, T.,Hattori, H.,Ohno, Y.,Sohma, J. and Tanabe, K. (1971) Basic sites and reducing sites of calcium oxide and their catalytic activities. J. Catal., 22, 130. [CrossRef]
  • Knözinger, E.,Jacob, K.H.,Singh, S. and Hofmann, P. (1993) Hydroxyl groups as IR active surface probes on MgO crystallites. Surf. Sci., 290, 388. [CrossRef]
  • Anderson, P.J.,Horlock, R.F. and Olivier, J.F. (1965) Interaction of water with the magnesium oxide surface. T. Faraday Soc., 61, 2754. [CrossRef]
  • Tsyganenko, A.A. and Filimonov, V.N. (1973) Infra-red spectra of surface hydroxyl groups and crystalline structure of oxides. J. Mol. Struct., 19, 579. [CrossRef]
  • Shido, T.,Asakura, K. and Iwasawa, Y. (1989) The hydrogen exchange reaction of surface deuteroxyl groups on MgO with H2. J. Chem. Soc. Faraday T., 85, 441. [CrossRef]
  • Coluccia, S.,Marchese, L.,Lavagnino, S. and Anpo, M. (1987) Hydroxyls on the surface of MgO powders. Spectrochim. Acta A, 43, 1573. [CrossRef]
  • Coluccia, S.,Lavagnino, S. and Marchese, L. (1988) The hydroxylated surface of magnesium oxide powders and the formation of surface sites. Mat. Chem. Phys., 18, 445. [CrossRef]
  • Morrow, B.A. (1990) Surface groups on oxides. Stud. Surf. Sci. Catal., 57, 161. [CrossRef]
  • Chizallet, C., Costentin, G., Che, M., Delbecq, F. and Sautet, P. (2006) Revisiting acido-basicity of MgO surface by periodic DFT calculations: role of surface topology and ion coordination on water dissociation (submitted).

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.