Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 471 - 477
Published online 01 January 2007
  • Ertl, G., Knözinger, H. and Weitkamp, J. (eds.) (1997) Handbook of Heterogeneous Catalysis, Wiley, New York. [Google Scholar]
  • Duke, C.B. and Plummer, E.W. (eds.) (2002) Frontiers in Surface and Interface Science, North-Holland, Amsterdam. [Google Scholar]
  • Cant, N.W.,Hicks, P.C. and Lennon, B.S. (1978) Steady-state oxidation of carbon monoxide over supported noble metals with particular reference to platinum. J. Catal. 54, 372-383. [CrossRef] [Google Scholar]
  • Peden, C.H.F. and Goodman, D.W. (1986) Kinetics of CO oxidation over Ru(0001). J. Phys. Chem. 90, 1360-1365. [CrossRef] [Google Scholar]
  • Böttcher, A.,Niehus, H.,Schwegmann, S.,Over, H. and Ertl, G. (1997) CO reaction over oxygen-rich Ru(0001) surfaces. J. Phys. Chem. B 101, 11185-11191. [CrossRef] [Google Scholar]
  • Böttcher, A. and Niehus, H. (1999) Oxygen adsorbed on oxidized Ru(0001). Phys. Rev. B 60, 14396-14404. [CrossRef] [Google Scholar]
  • Over, H.,Kim, Y.D.,Seitsonen, A.P.,Wendt, S.,Lundgren, E.,Schmid, M.,Varga, P.,Morgante, A. and Ertl, G. (2000) Atomic-scale structure and catalytic reactivity of the RuO2(110) surface. Science 287, 1474-1476. [CrossRef] [PubMed] [Google Scholar]
  • Kim, Y.D.,Over, H.,Krabbes, G. and Ertl, G. (2001) Identifi-cation of RuO2 as the active phase in CO oxidation on oxygenrich ruthenium surfaces. Top. Catal. 14, 95-100. [CrossRef] [Google Scholar]
  • Reuter, K., Stampfl, C., Ganduglia-Pirovano, M.V. and Schef-fler, M. (2002) Atomistic description of oxide formation on metal surfaces: the example of ruthenium. Chem. Phys. Lett. 352, 311-317. [Google Scholar]
  • Over, H. and Muhler, M. (2003) Catalytic CO oxidation over ruthenium – bridging the pressure gap. Prog. Surf. Sci. 72, 3-17; and refs. therein. [CrossRef] [Google Scholar]
  • Assmann, J., Narkhede, V., Khodeir, L., Lö.er, E.,Hinrichsen, O.,Birkner, A.,Over, H. and Muhler, M. (2004) On the nature of the active state of supported ruthenium catalysts used for the oxidation of carbon monoxide: steady-state and transient kinetics combined with in situ infrared spectroscopy. J. Phys. Chem. B 108, 14634-14642. [CrossRef] [Google Scholar]
  • He, Y.B.,Knapp, M.,Lundgren, E. and Over, H. (2005) Ru(0001) model catalyst under oxidizing and reducing reaction conditions: in situ high-pressure surface X-ray di.raction study. J. Phys. Chem. B 109, 21825-21830. [CrossRef] [PubMed] [Google Scholar]
  • Liu, Z.P.,Hu, P. and Alavi, A. (2001) Mechanism for the high reactivity of CO oxidation on a ruthenium-oxide. J. Chem. Phys. 114, 5956-5957. [CrossRef] [Google Scholar]
  • Fan, C.Y.,Wang, J.,Jacobi, K. and Ertl, G. (2001) The oxidation of CO on RuO2(110) at room temperature. J. Chem. Phys. 114, 10058-10062. [CrossRef] [Google Scholar]
  • Wang, J.,Fan, C.Y.,Jacobi, K. and Ertl, G. (2002) The kinetics of CO oxidation on RuO2(110): bridging the pressure gap. J. Phys. Chem. B 106, 3422-3427. [CrossRef] [Google Scholar]
  • Stampfl, C., Schwegmann, S., Over, H.,,M. and Ertl., G. (1996) Structure and stability of a high-coverage (1 × 1) oxygen phase on Ru(0001). Phys. Rev. Lett. 77, 3371-3374. [Google Scholar]
  • Todorova, M., Li, W.X., Ganduglia-Pirovano, M.V., Stampfl, C., Reuter, K. and, M. (2002) Role of subsurface oxygen in oxide formation at transition metal surfaces. Phys. Rev. Lett. 89, 096103. [Google Scholar]
  • Böttcher, A.,Starke, U.,Conrad, H.,Blume, R.,Niehus, H.,Gregoratti, L.,Kaulich, B.,Barinov, A. and Kiskinova, M. (2002) Spectral and spatial anisotropy of the oxide growth on Ru(0001). J. Chem. Phys. 117, 8104-8109. [CrossRef] [Google Scholar]
  • Blume, R.,Niehus, H.,Conrad, H.,Böttcher, A.,Aballe, L.,Gregoriatti, L.,Barinov, A. and Kiskinova, M. (2005) Identi-fication of subsurface oxygen species created during oxidation of Ru(0001). J. Phys. Chem. B 109, 14052-14058. [CrossRef] [PubMed] [Google Scholar]
  • Reuter, K. and, M. (2004) Oxide formation at the surface of late 4d transition metals: insights from first-principles atomistic thermodynamics. Appl. Phys. A-Mater. 78, 793-798. [Google Scholar]
  • Reuter, K. (2006) Nanometer and Sub-nanometer Thin Oxide Films at Surfaces of Late Transition Metals, in Nanocatalysis: Principles, Methods, Case Studies, Heiz, U., Landman, U. (eds.), Springer, Berlin. [Google Scholar]
  • Reuter, K. and, M. (2002) Composition, structure, and stability of RuO2(110) as a function of oxygen pressure. Phys. Rev. B 65, 035406. [Google Scholar]
  • Reuter, K. and, M. (2003) First-principles atomistic thermodynamics for oxidation catalysis: surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90, 046103. [Google Scholar]
  • Reuter, K. and, M. (2003) Composition and structure of the RuO2(110) surface in an O2 and CO environment: implications for the catalytic formation of CO2. Phys. Rev. B 68, 045407. [Google Scholar]
  • Reuter, K., Frenkel, D. and, M. (2004) The steadystate of heterogeneous catalysis, studied by first-principles statistical mechanics. Phys. Rev. Lett. 93, 116105. [Google Scholar]
  • Reuter, K. and, M. (2006) First-principles kinetic Monte Carlo simulations for heterogeneous catalysis: application to the CO oxidation at RuO2(110). Phys. Rev. B 73, 045433. [Google Scholar]
  • Kim, Y.D., Seitsonen, A.P., Wendt, S., Wang, J., Fan, C.Y., Jacobi, K., Over, H. and Ertl, G. (2001) Characterization of various oxygen species on an oxide surface: RuO2(110) J. Phys. Chem. B 105, 3752-3758. [Google Scholar]
  • Kim, Y.D., Seitsonen, A.P. and Over, H. (2001) Adsorption characteristics of CO and N2 on RuO2(110). Phys. Rev. B 63, 115419. [Google Scholar]
  • Seitsonen, A.P., Kim, Y.D., Knapp, M., Wendt, S. and Over, H. (2001) CO adsorption on the reduced RuO2(110) surface: energetics and structure. Phys. Rev. B 65, 035413. [Google Scholar]
  • Wang, J.,Fan, C.Y.,Jacobi, K. and Ertl, G. (2001) Adsorption and reaction ofCOon RuO2(110) surfaces. Surf. Sci. 481, 113-118. [CrossRef] [Google Scholar]
  • Kim, S.H.,Paulus, U.A.,Wang, Y.,Wintterlin, J.,Jacobi, K. and Ertl, G. (2003) Interaction of CO with the stoichiometric RuO2(110) surface. J. Chem. Phys. 119, 9729-9736. [CrossRef] [Google Scholar]
  • Paulus, U.A.,Wang, Y.,Jacobi, K. and Ertl, G. (2003) CO adsorption on the reduced RuO2(110) surface. Surf. Sci. 547, 349-354. [CrossRef] [Google Scholar]
  • Kiejna, A., Kresse, G., Rogal, J., De Sarkar, A., Reuter, K. and, M. (2006) Comparison of the full-potential and frozen-core approximation approaches to density-functional calculations of surfaces. Phys. Rev. B 73, 035404. [Google Scholar]
  • Reuter, K., Stampfl, C. and, M. (2005) Ab Initio Atomistic Thermodynamics and Statistical Mechanics of Surface Properties and Functions, in Handbook of Materials Modeling, Vol. 1, Yip., S. (ed.), Springer, Berlin. ISBN 1-4020-3287-0. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.