Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 61, Number 4, July-August 2006
Dossier: Research Advances in Rational Design of Catalysts and Sorbents
Page(s) 489 - 496
Published online 01 January 2007
  • Steynberg A.P. (2004) Introduction to Fischer-Tropsch technology, in Fischer-Tropsch technology, Studies in Surface Science and Catalysis, 152, Steynberg A.P. and Dry M. (Eds.), Elsevier, Amsterdam. [Google Scholar]
  • Dumesic J.A., Rudd D.F., Aparicio L.M., Rekoske J.E. and Treviño A.A. (1993) The Microkinetics of Heterogeneous Catalysis, American Chemical Society, Washington. [Google Scholar]
  • KlinkeII D.J. and Broadbelt L.J. (1999) Construction of a mechanistic model for Fischer-Tropsch synthesis on Ni(100) and Co(1000) surfaces, Chem. Eng. Sci., 54, 3379-3389. [CrossRef] [Google Scholar]
  • Lozano-Blanco G., Thybaut J.W., Surla K., Galtier P. and Marin G.B. (2005) Single-Event MicroKinetics for Fischer-Tropsch synthesis on iron-based catalysts, EuropaCat-VII, Sofia, Bulgaria, August 28-September 1. [Google Scholar]
  • Claeys M. and van Steen E. (2004) Basic Studies, in Fischer-Tropsch technology, Studies in Surface Science and Catalysis, 152, Steynberg A.P. and Dry M. (Eds.), Elsevier, Amsterdam. [Google Scholar]
  • Anderson R.B. (1984) The Fischer-Tropsch Synthesis, Academic Press, New York. [Google Scholar]
  • Vynckier E. and Froment G.F. (1991) Modeling of the Kinetics of Complex Processes Based upon Elementary Steps, in Kinetic and Thermodynamic Lumping of Multicomponent Mixtures, Astarita G. and Sandler S.I. (Eds.), Elsevier, Amsterdam. [Google Scholar]
  • Quintana-Solórzano R.,Thybaut J.,Marin G.B.,Lødeng R. and Holmen A. (2005) Single-Event MicroKinetics for coke formation in catalytic cracking, Catal. Today, 107–108, 619–629. [CrossRef] [Google Scholar]
  • Martens G.G.,Thybaut J.W. and Marin G.B. (2001) Singleevent rate parameters for the hydrocracking of cycloalkanes on Pt/US-Y zeolites, Ind. Eng. Chem. Res., 40, 1832-1944. [CrossRef] [Google Scholar]
  • Bent B.E. (1996) Mimicking aspects of heterogeneous catalysis: generating, isolating, and reacting proposed surface intermediates on single crystals in vacuum, Chem. Rev., 96, 1361–1390. [CrossRef] [PubMed] [Google Scholar]
  • Toyir J.,Leconte M.,Niccolai G.P. and Basset J.-M. (1995) Hydrogenolysis and Homologation of 3,3-dimethyl-1-butene on Ru/SiO2 catalyst: implications for the mechanism of carbon-carbon bond formation and cleavage on metal surfaces, J. Catal., 152, 306-312. [CrossRef] [Google Scholar]
  • Overett M.J.,Hill R.O. and Moss J.R. (2000) Organometallic chemistry and surface science: mechanistic models for the Fischer–Tropsch synthesis, Coordin. Chem. Rev., 206-207, 581-605. [CrossRef] [Google Scholar]
  • Zaera F. (2002) Selectivity in hydrocarbon catalytic reforming: a surface chemistry perspective, Appl. Catal. A-Gen., 229, 75-91. [CrossRef] [Google Scholar]
  • Kua J., Faglioni F. and GoddardIII W.A. (2000) Thermochemistry for hydrocarbon intermediates chemisorbed on metal surfaces: CHn-m(CH3)(m) with n = 1, 2, 3 and m = n on Pt, Ir, Os, Pd, Ph, and Ru, J. Am. Chem. Soc., 122, 2309-2321. [CrossRef] [Google Scholar]
  • Baltanas M.A. and Froment G.F. (1985) Computer Generation of reaction networks and calculation of product distributions in hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts, Comput. Chem. Eng., 9, 71-81. [CrossRef] [Google Scholar]
  • Temkin O.N., Zeigarnik A.V., Kuz'min A.E.,Bruk L.G. and Slivinskii E.V. (2002) Construction of the reaction networks for heterogeneous catalytic reactions: Fischer-Tropsch synthesis and related reactions, Russ. Chem. B., 51, 1-36. [Google Scholar]
  • Eyring H. (1935) The activated complex and the absolute rate of chemical reactions, Chem. Rev., 17, 65-77. [CrossRef] [Google Scholar]
  • Benson S.W. (1968) Thermochemical Kinetics, Wiley, New York. [Google Scholar]
  • Boudart M. and Diéga-Mariadassou G. (1982) Cinétique des réactions en catalyse hétérogène, Masson, Paris. [Google Scholar]
  • Shustorovich E. and Sellers H. (1998) The UBI-QEP method: a practical theoretical approach to understanding chemistry on transition metal surfaces, Surf. Sci. Rep., 31, 1-119. [CrossRef] [Google Scholar]
  • Vannice M.A. (2005) Kinetics of Catalytic Reactions, Springer, New York. [Google Scholar]
  • Cohen N. and Benson S.W. (1993) Estimation of heats of formation of organic compounds by additivity methods, Chem. Rev., 93, 2419-2438. [CrossRef] [Google Scholar]
  • Cohen N. (1996) Revised group additivity values for enthalpies of formation (at 298 K) of carbon-hydrogen and carbon-hydrogen-oxygen compounds, J. Phys. Chem. Ref. data, 25, 1411-1481. [CrossRef] [Google Scholar]
  • Cohen N. (2002) Thermochemistry of alkyl free radicals, J. Phys. Chem., 96, 9052-9058. [CrossRef] [Google Scholar]
  • [Google Scholar]
  • Bezinger J.B. (1991) Thermochemical methods for reaction energetics on metal surfaces, in Metal-surface reaction energetics, Shustorovich E. (Ed.), VCH, New York. [Google Scholar]
  • Lox E.S.,Marin G.B., De Grave E. and Bussiére P. (1988) Characterization of a promoted precipitated iron catalyst for Fischer-Trospch synthesis, Appl. Catal., 40, 197-218. [CrossRef] [Google Scholar]
  • Lox E.S. and Froment G.F. (1993) Kinetics of the Fischer Tropsch reaction on a precipitated promoted iron catalyst 2. Kinetic modeling, Ind. Eng. Res., 32, 71-82. [CrossRef] [Google Scholar]
  • Rethwisch D.G. and Dumesic J.A. (1986) The effect of metal-oxygen bond strength on properties of oxides: II. Water Gas Shift over supported iron and zinc oxides, J. Catal., 101, 35-42. [CrossRef] [Google Scholar]
  • Lox E. (1987) De synthese van koolwaterstoffen uit koolstofmonoxyde en waterstof, PhD Thesis, Ghent University. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.