Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 59, Number 2, March-April 2004
Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Page(s) 185 - 195
Published online 01 December 2006
  • A. Ahmadi, Utilisation des propriétés équivalentes dans les modéles de réservoir : cas des écoulements diphasiques incompressibles, Thése de Doctorat de l'Université de Bordeaux I, spécialité Mécanique, 1992. [Google Scholar]
  • T. Arbogast and S.L. Bryant, Numerical subgrid upscaling for waterflood simulations, paper SPE 66375 Presented at the 16th SPE Symposium on Reservoir Simulation held in Houston, Texas, Feb. 11-14, 2001. [Google Scholar]
  • R. Archer, Pseudo function generation, MSc Report, Department of Petroleum Engineering of Stanford University, September 1996. [Google Scholar]
  • V. Artus, Mise à l'échelle des écoulements diphasiques dans les milieux poreux hétérogènes,, Thèse de Doctorat de l'Université de Paris 6 - Pierre et Marie Curie, spécialité Géosciences et Ressources Naturelles, 2003. [Google Scholar]
  • V. Artus and B. Neotinger, Macrodispersion approach for upscaling two-phase, immiscible flows in heterogeneous porous media, proc. 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, September 2002. [Google Scholar]
  • V. Artus, B. Nœtinger and L. Ricard, Dynamics of the water-oil front for two-phase, immiscible flow in heterogeneous porous media. 1-Stratified media. To appear in Transport in Porous Media, 2004. [Google Scholar]
  • K. Aziz, Reservoir simulation grids: opportunities and problems, paper SPE 25233, 12th Symposium on Reservoir Simulation, New Orleans, U.S.A., February 28-March 3, 1993. [Google Scholar]
  • J.W. Barker and S. Thibeau, A critical review of the use of pseudo-relative permeabilities for upscaling, SPE paper 35491. European 3-D Reservoir Modelling Conference, Stavanger, Norway, April 1996. [Google Scholar]
  • M. Blunt and M. Christie, How to predict viscous eingering in three component flow, Transport in porous media, 12(207--236), 1993. [Google Scholar]
  • Y.C. Chang and K.K. Mohanty, Stochastic description of multiphase flow in heterogeneous porous media, paper SPE 28443 Presented at the SPE 69th Annual Technical Conference and Exhibition, 1994. [Google Scholar]
  • K.H. Coats, R.L. Nielsen and M.H. Terhune, Simulation of three-dimensional, two-phase flow in oil and gas reservoirs, paper SPE 1961, 1967. [Google Scholar]
  • K.H. Coats, J.R. Dempsey and J.H. Henderson, The use of vertical equilibrium in two-dimensional simulation of threedimensionnal reservoir performance, SPE Journal, March 1971, pages 63--71. [Google Scholar]
  • V. Cvetkovic and G. Dagan, Reactive transport and immiscible flow in geological media. II-Applications. Proc. Royal Society of London, 452:303--328, 1996. [Google Scholar]
  • G. Dagan, Flow and transport in porous formations. Springler- Verlag, 1989. [Google Scholar]
  • G. Dagan and V. Cvetkovic, Reactive transport and immiscible flow in geological media. I-General Theory. Proc. Royal Society of London, 452:285--301,1996. [Google Scholar]
  • L.P Dake, Fundamentals of reservoir engineering, Elsevier, 1978. [Google Scholar]
  • N.H. Darman, L.J. Durlofsky, K.S. Sorbie and G.E. Pickup, Upscaling immiscible gas displacements: quantitative use of fine grid flow data in grid coarsening schemes, paper SPE 59452, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, April 2000. [Google Scholar]
  • N.H. Darman, G.E. Pickup and K.S. Sorbie, The development of an optimal grid coarsening scheme utilizing the dynamic properties of the fine-scale flow data, 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, 3--6 September 2002. [Google Scholar]
  • L.J. Durlofsky, Use of higher moments for the description of upscaled, process independent relative permeabilities. SPE paper 37987, SPE Reservoir Simulation Symposium, Dallas, Texas, June 1997. [Google Scholar]
  • H. Dykstra and R.L. Parsons. Secondary recovery of oil in the US, API, 1950. [Google Scholar]
  • Y.R. Efendiev and L.J. Durlofsky. Accurate subgrid models for two-phase flow in heterogeneous reservoirs. SPE paper 79680, SPE Reservoir Simulation Symposium, Houston, Texas, 3--5 February 2003. [Google Scholar]
  • S. Ekrann and J.O. Aasen, Steady-state upscaling, Transport in Porous Media, 41(245--262), December 2000. [Google Scholar]
  • R.E. Fitzmorris, F.J. Kelsey and K.K. Pande, Effect of crossflow on sweep efficiency in water/oil displacement in heterogeneous reservoirs. Paper SPE 24901. 67th Annual Technical Conference and Exhibition of the SPE, Whashington, W.D.C., 4--7 October 1992. [Google Scholar]
  • F. Furtado and F. Pereira, Scaling analysis for two-phase, immiscible flow in heterogeneous porous media. Computational and Applied Mathematics, 17(3):237--263, 1998. [Google Scholar]
  • F. Furtado and F. Pereira, Crossover from nonlinearity controlled to heterogeneity controlled mixing in two-phase porous media flows. Computational Geosciences, 7:115--135, 2003. [Google Scholar]
  • Y. Gautier, M.J. Blunt and M.A. Christie, Nested gridding and streamline-based simulation for fast reservoir performance prediction, Computational Geosciences, 3(295--320), 1999. [Google Scholar]
  • L.W. Gelhar and C.L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resources Research, 19--1(161--180), February 1983. [Google Scholar]
  • A. Genty, A 3D phase diagram of two-phase flow drainage regimes in porous media, Proceedings of IAMG'99, pages 699-- 704, 1999. [Google Scholar]
  • J. Glimm, Y. Lee, Y. Ye, S. Hou and D. Sharp, Prediction of oil production with confidence intervals, Proc. SIAM Conf. on Math. and Comp. Issues in the Geosciences, 17--20 March, Austin, Texas, 2003. [Google Scholar]
  • S. Gorell and R. Bassett, Trends in reservoir simulation: Big models, scalable models? Will you please make up your mind?, paper SPE 71596, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September--3 October 2001. [Google Scholar]
  • S.S. Guedes and D.J. Schiozer, An implicit treatment of upscaling in numerical simulation, paper SPE 51937, SPE Symposium on Reservoir Simulation, Houston 14--17 February 1999. [Google Scholar]
  • D.R. Guérillot and S. Verdière, Different pressure grids for reservoir simulation in heterogeneous reservoirs, SPE paper 29148, SPE Symposium on Reservoir Simulation, San Antonio, Texas, 12--15 February 1995. [Google Scholar]
  • R.E. Guzman, D. Giordano, F.J. Fayers, A. Godi and K. Aziz, Evaluation of dynamic pseudofunctions for reservoir simulation, SPE Journal, March 1999, pages 37--46. [Google Scholar]
  • C.L. Hearn, Simulation of stratified waterflooding by pseudorelative permeability curves. Journal of Petroleum Technology, p. 805--813, July 1971. [Google Scholar]
  • T.A. Hewett and R.A. Behrens, Scaling laws in reservoir simulation and their use in a hybrid finite difference/streamtube approach to simulating the effects of permeability heterogeneity, Reservoir Characterization, Academic Press San Diego, pages 402--441, 1989. [Google Scholar]
  • H.H. Jacks, O.J.E. Smith and C.C. Mattax, The modeling of a three-dimensional reservoir with a two-dimensional reservoir simulator - The use of dynamic pseudo functions, SPE Journal, June 1973, pages 175--185. [Google Scholar]
  • K.D. Jarman, Stochastic immiscible flow with moment equations, PhD Thesis, Graduate School of the University of Colorado, 2000. [Google Scholar]
  • J.E. Killough and H.P. Foster, Reservoir simulation of the Empire Abo Field: The use of pseudos in a multilayered system, SPE Journal, October 1979, pages 279--291. [Google Scholar]
  • M.J. King and V.A. Dunayevsky, Why waterflood works: a linearized stability analysis. SPE paper 19648, 64th Annual Technical Conference and Exhibition held in Houston, Texas, 16--19 September 1989. [Google Scholar]
  • C.A. Kossack, J.O. Aasen and S.T. Opdal, Scaling up heterogeneities with pseudofunctions, SPE Formation Evaluation, September 1990, pages 226--389. [Google Scholar]
  • E.J. Koval, A method for predicting the performance of unstable miscible displacement in heterogeneous media, SPE Journal, June 1963, pages 145--154. [Google Scholar]
  • J.R. Kyte and D.W. Berry, New pseudo functions to control numerical dispersion. SPE 5105, pages 269--276, August 1975. [Google Scholar]
  • P. Langlo and M. Espedal, Macrodispersion for two-phase, immiscible flow in porous media. Advances in Water Resources, 17:297--316, 1994. [Google Scholar]
  • R. Lenormand, Determining flow equations from stochastic properties of a permeability field: the MHD model. SPE Journal, p. 179--190, June 1996. [Google Scholar]
  • R. Lenormand, Calculation of fractional flow for dynamic upscaling. In proceedings from the 20th IEA Collaborative Project on enhanced Oil Recovery, 1999. [Google Scholar]
  • D. Li and B. Beckner, Optimal uplayering for scaleup of multimillion-cell geologic models, paper SPE 62927, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1--4 October 2000. [Google Scholar]
  • J.C. Martin, Partial Integration of Equations of multiphase flow, SPE Journal, December 1968, pages 370-380. [Google Scholar]
  • B. Noetinger,Écoulements en milieux poreux hétérogènes et fracturés en régimes permanent et transitoire, Habilitation à Diriger des Recherches de l'Université Paris VI, Octobre 2000. [Google Scholar]
  • B. Noetinger, V. Artus and L. Ricard, Dynamics of the water-oil front for two-phase, immiscible flow in heterogeneous porous media. 1-Stratified media. Submitted to Transport in Porous Media, November 2002. [Google Scholar]
  • D.W. Peaceman, Calculation of transmissibilities of gridblocks defined by arbitrary corner point geometry, paper SPE 37306, 1996. [Google Scholar]
  • D.K. Ponting, Corner point geometry in reservoir simulation, Proc. 1st European Conference on the Mathematics of Oil Recovery, Cambridge, U.K., 1989. [Google Scholar]
  • M. Prevost, M.G. Edwards and M.J. Blunt, Streamline tracing on curvilinear structured and unstructured grids, SPE Journal, June 2002, pages 139--148. [Google Scholar]
  • M. Quintard and S. Whitaker, Two-phase flow in heterogeneous porous media: The method of large-scale averaging, Transport in Porous Media, 3(357--413), 1988. [Google Scholar]
  • M. Rame and J.E. Killough A New Approach to the Simulation of Flows in Highly Heterogeneous Porous Media, SPE 21247, SPE symposium on Reservoir Simulation, Anaheim 1991 [Google Scholar]
  • Y. Rubin, Stochastic modelling of macrodispersion in heterogeneous porous media. Water Resources Research, 26(1):133-- 141, January 1990. [Google Scholar]
  • P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid. Proc. Royal Society of London, A245:312--329, 1958. [Google Scholar]
  • A.D. Simon and L.F. Koederitz, An improved method for the determination of pseudo-relative permeability data for strati- fied systems. SPE paper 10975, Annual Fall Technical Conference and Exhibition, New-Orlean, L.A., September 1982. [Google Scholar]
  • D. Stern and A.G. Dawson, A technique for generating reservoir simulation grids to preserve geologic heterogeneity, paper SPE 51942, SPE Reservoir Simulation Symposium, Houston, Texas, 14--17 February 1999. [Google Scholar]
  • W.M. Stiles, Use of permeability distribution in waterflood calculations. Trans. A.I.M.E. p. 9--13, January 1949. [Google Scholar]
  • H.L. Stone, Rigorous black oil pseudo functions, paper SPE 21207, 11th SPE Symposium on Reservoir Simulation, Anaheim, California, 1991. [Google Scholar]
  • M.R. Todd and W.J. Longstaff, The development, testing and application of a numerical simulator for predicting miscible flood performance, T. AIME, 253(874--882), 1972. [Google Scholar]
  • S. Verdière and D.R. Guérillot, Dual mesh method for multiphase flows in heterogeneous media, 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria, 3--6 September 1996. [Google Scholar]
  • S. Verdière and M.H Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for twophase flow problems in porous media, Numerical Mathematics, 80(601--639), 1998. [Google Scholar]
  • Y. Yokoyama and L.W. Lake, The effects of capillary pressure on immiscible displacements in stratified porous media, paper SPE 10109, 56th Annual Fall Meeting of the SPE, San Antonio, October 1981. [Google Scholar]
  • Y.C. Yortsos, Analytical studies for processes at vertical equilibrium. SPE paper 26022, 1992. [Google Scholar]
  • V.J. Zapata and L.W. Lake, A theoretical analysis of viscous crossflow. Paper SPE 10111. 56th Annual Fall Technical Conference and Exhibition of the SPE, San Antonio, Texas, 3--7 October 1981. [Google Scholar]
  • D. Zhang, Stochastic methods for flow in porous media, Academic Press, 2001. [Google Scholar]
  • D. Zhang, L. Li and H.A. Tchelepi, Stochastic formulation for uncertainty assessment of two-phase flow in heterogeneous reservoirs. SPE paper 51930, SPE Reservoir Simulation and Symposium held in Houston, Texas, February 1999. [Google Scholar]

Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.

Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.

Initial download of the metrics may take a while.