Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Open Access
Oil & Gas Science and Technology - Rev. IFP
Volume 59, Numéro 2, March-April 2004
Dossier: Upscaling of Fluid Flow in Oil Reservoirs
Page(s) 185 - 195
Publié en ligne 1 décembre 2006
  • A. Ahmadi, Utilisation des propriétés équivalentes dans les modéles de réservoir : cas des écoulements diphasiques incompressibles, Thése de Doctorat de l'Université de Bordeaux I, spécialité Mécanique, 1992. [Google Scholar]
  • T. Arbogast and S.L. Bryant, Numerical subgrid upscaling for waterflood simulations, paper SPE 66375 Presented at the 16th SPE Symposium on Reservoir Simulation held in Houston, Texas, Feb. 11-14, 2001. [Google Scholar]
  • R. Archer, Pseudo function generation, MSc Report, Department of Petroleum Engineering of Stanford University, September 1996. [Google Scholar]
  • V. Artus, Mise à l'échelle des écoulements diphasiques dans les milieux poreux hétérogènes,, Thèse de Doctorat de l'Université de Paris 6 - Pierre et Marie Curie, spécialité Géosciences et Ressources Naturelles, 2003. [Google Scholar]
  • V. Artus and B. Neotinger, Macrodispersion approach for upscaling two-phase, immiscible flows in heterogeneous porous media, proc. 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, September 2002. [Google Scholar]
  • V. Artus, B. Nœtinger and L. Ricard, Dynamics of the water-oil front for two-phase, immiscible flow in heterogeneous porous media. 1-Stratified media. To appear in Transport in Porous Media, 2004. [Google Scholar]
  • K. Aziz, Reservoir simulation grids: opportunities and problems, paper SPE 25233, 12th Symposium on Reservoir Simulation, New Orleans, U.S.A., February 28-March 3, 1993. [Google Scholar]
  • J.W. Barker and S. Thibeau, A critical review of the use of pseudo-relative permeabilities for upscaling, SPE paper 35491. European 3-D Reservoir Modelling Conference, Stavanger, Norway, April 1996. [Google Scholar]
  • M. Blunt and M. Christie, How to predict viscous eingering in three component flow, Transport in porous media, 12(207--236), 1993. [Google Scholar]
  • Y.C. Chang and K.K. Mohanty, Stochastic description of multiphase flow in heterogeneous porous media, paper SPE 28443 Presented at the SPE 69th Annual Technical Conference and Exhibition, 1994. [Google Scholar]
  • K.H. Coats, R.L. Nielsen and M.H. Terhune, Simulation of three-dimensional, two-phase flow in oil and gas reservoirs, paper SPE 1961, 1967. [Google Scholar]
  • K.H. Coats, J.R. Dempsey and J.H. Henderson, The use of vertical equilibrium in two-dimensional simulation of threedimensionnal reservoir performance, SPE Journal, March 1971, pages 63--71. [Google Scholar]
  • V. Cvetkovic and G. Dagan, Reactive transport and immiscible flow in geological media. II-Applications. Proc. Royal Society of London, 452:303--328, 1996. [Google Scholar]
  • G. Dagan, Flow and transport in porous formations. Springler- Verlag, 1989. [Google Scholar]
  • G. Dagan and V. Cvetkovic, Reactive transport and immiscible flow in geological media. I-General Theory. Proc. Royal Society of London, 452:285--301,1996. [Google Scholar]
  • L.P Dake, Fundamentals of reservoir engineering, Elsevier, 1978. [Google Scholar]
  • N.H. Darman, L.J. Durlofsky, K.S. Sorbie and G.E. Pickup, Upscaling immiscible gas displacements: quantitative use of fine grid flow data in grid coarsening schemes, paper SPE 59452, SPE Asia Pacific Conference on Integrated Modelling for Asset Management, Yokohama, Japan, April 2000. [Google Scholar]
  • N.H. Darman, G.E. Pickup and K.S. Sorbie, The development of an optimal grid coarsening scheme utilizing the dynamic properties of the fine-scale flow data, 8th European Conference on the Mathematics of Oil Recovery, Freiberg, Germany, 3--6 September 2002. [Google Scholar]
  • L.J. Durlofsky, Use of higher moments for the description of upscaled, process independent relative permeabilities. SPE paper 37987, SPE Reservoir Simulation Symposium, Dallas, Texas, June 1997. [Google Scholar]
  • H. Dykstra and R.L. Parsons. Secondary recovery of oil in the US, API, 1950. [Google Scholar]
  • Y.R. Efendiev and L.J. Durlofsky. Accurate subgrid models for two-phase flow in heterogeneous reservoirs. SPE paper 79680, SPE Reservoir Simulation Symposium, Houston, Texas, 3--5 February 2003. [Google Scholar]
  • S. Ekrann and J.O. Aasen, Steady-state upscaling, Transport in Porous Media, 41(245--262), December 2000. [Google Scholar]
  • R.E. Fitzmorris, F.J. Kelsey and K.K. Pande, Effect of crossflow on sweep efficiency in water/oil displacement in heterogeneous reservoirs. Paper SPE 24901. 67th Annual Technical Conference and Exhibition of the SPE, Whashington, W.D.C., 4--7 October 1992. [Google Scholar]
  • F. Furtado and F. Pereira, Scaling analysis for two-phase, immiscible flow in heterogeneous porous media. Computational and Applied Mathematics, 17(3):237--263, 1998. [Google Scholar]
  • F. Furtado and F. Pereira, Crossover from nonlinearity controlled to heterogeneity controlled mixing in two-phase porous media flows. Computational Geosciences, 7:115--135, 2003. [Google Scholar]
  • Y. Gautier, M.J. Blunt and M.A. Christie, Nested gridding and streamline-based simulation for fast reservoir performance prediction, Computational Geosciences, 3(295--320), 1999. [Google Scholar]
  • L.W. Gelhar and C.L. Axness, Three-dimensional stochastic analysis of macrodispersion in aquifers, Water Resources Research, 19--1(161--180), February 1983. [Google Scholar]
  • A. Genty, A 3D phase diagram of two-phase flow drainage regimes in porous media, Proceedings of IAMG'99, pages 699-- 704, 1999. [Google Scholar]
  • J. Glimm, Y. Lee, Y. Ye, S. Hou and D. Sharp, Prediction of oil production with confidence intervals, Proc. SIAM Conf. on Math. and Comp. Issues in the Geosciences, 17--20 March, Austin, Texas, 2003. [Google Scholar]
  • S. Gorell and R. Bassett, Trends in reservoir simulation: Big models, scalable models? Will you please make up your mind?, paper SPE 71596, SPE Annual Technical Conference and Exhibition, New Orleans, Louisiana, 30 September--3 October 2001. [Google Scholar]
  • S.S. Guedes and D.J. Schiozer, An implicit treatment of upscaling in numerical simulation, paper SPE 51937, SPE Symposium on Reservoir Simulation, Houston 14--17 February 1999. [Google Scholar]
  • D.R. Guérillot and S. Verdière, Different pressure grids for reservoir simulation in heterogeneous reservoirs, SPE paper 29148, SPE Symposium on Reservoir Simulation, San Antonio, Texas, 12--15 February 1995. [Google Scholar]
  • R.E. Guzman, D. Giordano, F.J. Fayers, A. Godi and K. Aziz, Evaluation of dynamic pseudofunctions for reservoir simulation, SPE Journal, March 1999, pages 37--46. [Google Scholar]
  • C.L. Hearn, Simulation of stratified waterflooding by pseudorelative permeability curves. Journal of Petroleum Technology, p. 805--813, July 1971. [Google Scholar]
  • T.A. Hewett and R.A. Behrens, Scaling laws in reservoir simulation and their use in a hybrid finite difference/streamtube approach to simulating the effects of permeability heterogeneity, Reservoir Characterization, Academic Press San Diego, pages 402--441, 1989. [Google Scholar]
  • H.H. Jacks, O.J.E. Smith and C.C. Mattax, The modeling of a three-dimensional reservoir with a two-dimensional reservoir simulator - The use of dynamic pseudo functions, SPE Journal, June 1973, pages 175--185. [Google Scholar]
  • K.D. Jarman, Stochastic immiscible flow with moment equations, PhD Thesis, Graduate School of the University of Colorado, 2000. [Google Scholar]
  • J.E. Killough and H.P. Foster, Reservoir simulation of the Empire Abo Field: The use of pseudos in a multilayered system, SPE Journal, October 1979, pages 279--291. [Google Scholar]
  • M.J. King and V.A. Dunayevsky, Why waterflood works: a linearized stability analysis. SPE paper 19648, 64th Annual Technical Conference and Exhibition held in Houston, Texas, 16--19 September 1989. [Google Scholar]
  • C.A. Kossack, J.O. Aasen and S.T. Opdal, Scaling up heterogeneities with pseudofunctions, SPE Formation Evaluation, September 1990, pages 226--389. [Google Scholar]
  • E.J. Koval, A method for predicting the performance of unstable miscible displacement in heterogeneous media, SPE Journal, June 1963, pages 145--154. [Google Scholar]
  • J.R. Kyte and D.W. Berry, New pseudo functions to control numerical dispersion. SPE 5105, pages 269--276, August 1975. [Google Scholar]
  • P. Langlo and M. Espedal, Macrodispersion for two-phase, immiscible flow in porous media. Advances in Water Resources, 17:297--316, 1994. [Google Scholar]
  • R. Lenormand, Determining flow equations from stochastic properties of a permeability field: the MHD model. SPE Journal, p. 179--190, June 1996. [Google Scholar]
  • R. Lenormand, Calculation of fractional flow for dynamic upscaling. In proceedings from the 20th IEA Collaborative Project on enhanced Oil Recovery, 1999. [Google Scholar]
  • D. Li and B. Beckner, Optimal uplayering for scaleup of multimillion-cell geologic models, paper SPE 62927, SPE Annual Technical Conference and Exhibition, Dallas, Texas, 1--4 October 2000. [Google Scholar]
  • J.C. Martin, Partial Integration of Equations of multiphase flow, SPE Journal, December 1968, pages 370-380. [Google Scholar]
  • B. Noetinger,Écoulements en milieux poreux hétérogènes et fracturés en régimes permanent et transitoire, Habilitation à Diriger des Recherches de l'Université Paris VI, Octobre 2000. [Google Scholar]
  • B. Noetinger, V. Artus and L. Ricard, Dynamics of the water-oil front for two-phase, immiscible flow in heterogeneous porous media. 1-Stratified media. Submitted to Transport in Porous Media, November 2002. [Google Scholar]
  • D.W. Peaceman, Calculation of transmissibilities of gridblocks defined by arbitrary corner point geometry, paper SPE 37306, 1996. [Google Scholar]
  • D.K. Ponting, Corner point geometry in reservoir simulation, Proc. 1st European Conference on the Mathematics of Oil Recovery, Cambridge, U.K., 1989. [Google Scholar]
  • M. Prevost, M.G. Edwards and M.J. Blunt, Streamline tracing on curvilinear structured and unstructured grids, SPE Journal, June 2002, pages 139--148. [Google Scholar]
  • M. Quintard and S. Whitaker, Two-phase flow in heterogeneous porous media: The method of large-scale averaging, Transport in Porous Media, 3(357--413), 1988. [Google Scholar]
  • M. Rame and J.E. Killough A New Approach to the Simulation of Flows in Highly Heterogeneous Porous Media, SPE 21247, SPE symposium on Reservoir Simulation, Anaheim 1991 [Google Scholar]
  • Y. Rubin, Stochastic modelling of macrodispersion in heterogeneous porous media. Water Resources Research, 26(1):133-- 141, January 1990. [Google Scholar]
  • P.G. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous fluid. Proc. Royal Society of London, A245:312--329, 1958. [Google Scholar]
  • A.D. Simon and L.F. Koederitz, An improved method for the determination of pseudo-relative permeability data for strati- fied systems. SPE paper 10975, Annual Fall Technical Conference and Exhibition, New-Orlean, L.A., September 1982. [Google Scholar]
  • D. Stern and A.G. Dawson, A technique for generating reservoir simulation grids to preserve geologic heterogeneity, paper SPE 51942, SPE Reservoir Simulation Symposium, Houston, Texas, 14--17 February 1999. [Google Scholar]
  • W.M. Stiles, Use of permeability distribution in waterflood calculations. Trans. A.I.M.E. p. 9--13, January 1949. [Google Scholar]
  • H.L. Stone, Rigorous black oil pseudo functions, paper SPE 21207, 11th SPE Symposium on Reservoir Simulation, Anaheim, California, 1991. [Google Scholar]
  • M.R. Todd and W.J. Longstaff, The development, testing and application of a numerical simulator for predicting miscible flood performance, T. AIME, 253(874--882), 1972. [Google Scholar]
  • S. Verdière and D.R. Guérillot, Dual mesh method for multiphase flows in heterogeneous media, 5th European Conference on the Mathematics of Oil Recovery, Leoben, Austria, 3--6 September 1996. [Google Scholar]
  • S. Verdière and M.H Vignal, Numerical and theoretical study of a dual mesh method using finite volume schemes for twophase flow problems in porous media, Numerical Mathematics, 80(601--639), 1998. [Google Scholar]
  • Y. Yokoyama and L.W. Lake, The effects of capillary pressure on immiscible displacements in stratified porous media, paper SPE 10109, 56th Annual Fall Meeting of the SPE, San Antonio, October 1981. [Google Scholar]
  • Y.C. Yortsos, Analytical studies for processes at vertical equilibrium. SPE paper 26022, 1992. [Google Scholar]
  • V.J. Zapata and L.W. Lake, A theoretical analysis of viscous crossflow. Paper SPE 10111. 56th Annual Fall Technical Conference and Exhibition of the SPE, San Antonio, Texas, 3--7 October 1981. [Google Scholar]
  • D. Zhang, Stochastic methods for flow in porous media, Academic Press, 2001. [Google Scholar]
  • D. Zhang, L. Li and H.A. Tchelepi, Stochastic formulation for uncertainty assessment of two-phase flow in heterogeneous reservoirs. SPE paper 51930, SPE Reservoir Simulation and Symposium held in Houston, Texas, February 1999. [Google Scholar]

Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.

Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.

Le chargement des statistiques peut être long.