- Dyes A.B., Caudle B.H., Erickson R.A. (1954) Oil production after breakthrough as influenced by mobility ratio, J. Petrol. Technol. 6, 04, 27–32. SPE-213-G. https://doi.org/10.2118/309-G. [CrossRef] [Google Scholar]
- van Meurs P., van der Poel C. (1958) A theoretical description of water-drive processes involving viscous fingering, Society of Petroleum Engineers. [Google Scholar]
- Perkins T.K., Johnston O.C. (1969) A study of immiscible fingering in linear models, Soc. Pet. Eng. J. 9, 01, 39–46. SPE-8371-PA. https://doi.org/10.2118/2230-PA. [CrossRef] [Google Scholar]
- Hagoort J. (1974) Displacement stability of water drives in water-wet connate-water-bearing reservoirs, Soc. Pet. Eng. J. 14, 01, 63–74. SPE-8371-PA. https://doi.org/10.2118/4268-PA. [CrossRef] [Google Scholar]
- Yortsos Y.C., Huang A.B. (1986) Linear-stability analysis of immiscible displacement: Part 1-simple basic flow profiles, SPE Reserv. Eng. 1, 04, 378–390. SPE-12692-PA. https://doi.org/10.2118/12692-PA. [CrossRef] [Google Scholar]
- Koval E.J. (1963) A method for predicting the performance of unstable miscible displacement in heterogeneous media, Soc. Pet. Eng. J. 3, 02, 145–154. SPE-8371-PA. https://doi.org/10.2118/450-PA. [CrossRef] [Google Scholar]
- Rapoport L.A., Leas W.J. (1953) Properties of linear waterfloods, J. Petrol. Technol. 5, 05, 139–148. SPE-213-G. https://doi.org/10.2118/213-G. [CrossRef] [Google Scholar]
- Peters E.J., Flock D.L. (1981) The onset of instability during two-phase immiscible displacement in porous media, Soc. Pet. Eng. J. 21, 02, 249–258. SPE-8371-PA. https://doi.org/10.2118/8371-PA. [CrossRef] [Google Scholar]
- Chuoke R.L., van Meurs P., van der Poel C. (1959) The instability of slow, immiscible, viscous liquid-liquid displacements in permeable media, Society of Petroleum Engineers. [Google Scholar]
- Lenormand R., Touboul E., Zarcone C. (1988) Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech. 189, 165–187. https://doi.org/10.1017/S0022112088000953. [Google Scholar]
- Doorwar S. (2015) Understanding unstable immiscible displacement in porous media, The University of Texas at Austin, Austin, TX, USA. https://doi.org/10.15781/T25G6Q. [Google Scholar]
- Bouquet S., Douarche F., Roggero F., Leray S. (2020) Characterization of viscous fingering and channeling for the assessment of polymer-based heavy oil displacements, Transp. Porous Media 131, 3, 873–906. https://doi.org/10.1007/s11242-019-01370-3. [CrossRef] [Google Scholar]
- Worawutthichanyakul T., Mohanty K.K. (2017) Unstable immiscible displacements in oil-wet rocks, Transp. Porous Media 119, 1, 205–223. https://doi.org/10.1007/s11242-017-0880-6. [Google Scholar]
- Vives M.T., Chang Y.C., Mohanty K.K. (1995) Effect of wettability on adverse mobility immiscible floods, Society of Petroleum Engineers, 10 p. [Google Scholar]
- de Haan J. (1959) 25. Effect of Capillary Forces in the Water-Drive Process, World Petroleum Congress, 18 p. [Google Scholar]
- Chatzis I., Dullien F. (1983) Dynamic immiscible displacement mechanisms in pore doublets: Theory versus experiment, J. Coll. Interf. Sci. 91, 1, 199–222. https://doi.org/10.1016/0021-9797(83)90326-0. [CrossRef] [Google Scholar]
- Loubens R.D., Vaillant G., Regaieg M., Yang J., Moncorgé A., Fabbri C., Darche G. (2017) Numerical modeling of unstable water floods and tertiary polymer floods into highly viscous oils, in: SPE Reservoir Simulation Conference, February 20–22, 2017, Montgomery, TX, USA, Society of Petroleum Engineers. https://doi.org/10.2118/182638-MS. [Google Scholar]
- Doorwar S., Ambastha A. (2020) Pseudorelative permeabilities for simulation of unstable viscous oil displacement, SPE Reserv. Eval. Eng. 23, 04, 1403–1419. SPE-179648-PA. https://doi.org/10.2118/200421-PA. [CrossRef] [Google Scholar]
- Luo H., Mohanty K.K., Delshad M. (2017) Modeling and upscaling unstable water and polymer floods: Dynamic characterization of the effective viscous fingering, SPE Reserv. Eval. Eng. 20, 04, 779–794. SPE-179648-PA. https://doi.org/10.2118/179648-PA. [Google Scholar]
- Doorwar S., Mohanty K.K. (2017) Viscous-fingering function for unstable immiscible flows (includes associated Erratum), SPE J. 22, 01, 19–31. SPE-173290-PA. https://doi.org/10.2118/173290-PA. [Google Scholar]
- Fayers F.J. (1988) An approximate model with physically interpretable parameters for representing miscible viscous fingering, SPE Reserv. Eng. 3, 02, 551–558. SPE-12692-PA. https://doi.org/10.2118/13166-PA. [CrossRef] [Google Scholar]
- Sharma J., Inwood S.B., Kovscek A. (2012) Experiments and analysis of multiscale viscous fingering during forced imbibition, SPE J. 17, 04, 1142–1159. SPE-173290-PA. https://doi.org/10.2118/143946-PA. [CrossRef] [Google Scholar]
- Skauge A., Ormehaug P.A., Gurholt T., Vik B., Bondino I., Hamon G. (2012) 2-D visualisation of unstable waterflood and polymer flood for displacement of heavy oil, Society of Petroleum Engineers, 12 p. [Google Scholar]
- Doorwar S., Mohanty K.K. (2014) Extension of the dielectric breakdown model for simulation of viscous fingering at finite viscosity ratios, Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 90, 1, 13028. https://doi.org/10.1103/PhysRevE.90.013028. [CrossRef] [Google Scholar]
- Raeesi B., Morrow N.R., Mason G. (2014) Capillary pressure hysteresis behavior of three sandstones measured with a multistep outflow-inflow apparatus, Vadose Zone J. 13, 3. https://doi.org/10.2136/vzj2013.06.0097. [CrossRef] [Google Scholar]
- Lin Q., Bijeljic B., Pini R., Blunt M.J., Krevor S. (2018) Imaging and measurement of pore-scale interfacial curvature to determine capillary pressure simultaneously with relative permeability, Water Resour. Res. 54, 9, 7046–7060. https://doi.org/10.1029/2018WR023214. [CrossRef] [Google Scholar]
- Harleman D.R.F., Rumer R.R. (1963) Longitudinal and lateral dispersion in an isotropic porous medium, J. Fluid Mech. 16, 3, 385–394. https://doi.org/10.1017/S0022112063000847. [CrossRef] [Google Scholar]
- Brock D.C., Orr F.M. Jr (1991) Flow visualization of viscous fingering in heterogeneous porous media, Society of Petroleum Engineers, 12 p. [Google Scholar]
- Riaz A., Tchelepi H.A. (2004) Linear stability analysis of immiscible two-phase flow in porous media with capillary dispersion and density variation, Phys. Fluids 16, 12, 4727–4737. https://doi.org/10.1063/1.1812511. [CrossRef] [MathSciNet] [Google Scholar]
- Anton L., Hilfer R. (1999) Trapping and mobilization of residual fluid during capillary desaturation in porous media, Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 59, 6, 6819–6823. https://doi.org/10.1103/physreve.59.6819. [Google Scholar]
- Berg S., Ott H. (2012) Stability of CO2 – brine immiscible displacement, Int. J. Greenhouse Gas Cont. 11, 188–203. https://doi.org/10.1016/j.ijggc.2012.07.001. [CrossRef] [Google Scholar]
- Pavone D. (1992) Observations and correlations for immiscible viscous-fingering experiments, SPE Reserv. Eng. 7, 02, 187–194. SPE-12692-PA. https://doi.org/10.2118/19670-PA. [CrossRef] [Google Scholar]
- Craig F.F. (1971) The reservoir engineering aspects of waterflooding, Society of Petroleum Engineers. ISBN: 978-0-89520-202-4. [Google Scholar]
- Tang G.-Q., Kovscek A.R. (2011) High resolution imaging of unstable, forced imbibition in berea sandstone, Transp. Porous Media 86, 2, 617–634. https://doi.org/10.1007/s11242-010-9643-3. [CrossRef] [Google Scholar]
- Mascle M., Youssef S., Deschamps H., Vizika O. (2019) In-situ investigation of aging protocol effect on relative permeability measurements using high-throughput experimentation methods, Petrophys. – SPWLA J. Form. Eval. Reserv. Description 60, 04, 514–524. SPWLA-2019-v60n4a5. [CrossRef] [Google Scholar]
- Clauset A., Shalizi C.R., Newman M.E.J. (2009) Power-law distributions in empirical data, SIAM Rev. 51, 4, 661–703. https://doi.org/10.1137/070710111. [NASA ADS] [CrossRef] [Google Scholar]
- Salathiel R.A. (1973) Oil recovery by surface film drainage in mixed-wettability rocks, J. Petrol. Technol. 25, 10, 1216–1224. SPE-213-G. https://doi.org/10.2118/4104-PA. [CrossRef] [Google Scholar]
- Buckley S.E., Leverett M.C. (1942) Mechanism of fluid displacement in sands, Trans. AIME 146, 01, 107–116. SPE-942107-G. https://doi.org/10.2118/942107-G. [Google Scholar]
Open Access
Numéro |
Oil Gas Sci. Technol. – Rev. IFP Energies nouvelles
Volume 76, 2021
|
|
---|---|---|
Numéro d'article | 71 | |
Nombre de pages | 17 | |
DOI | https://doi.org/10.2516/ogst/2021053 | |
Publié en ligne | 3 novembre 2021 |
Les statistiques affichées correspondent au cumul d'une part des vues des résumés de l'article et d'autre part des vues et téléchargements de l'article plein-texte (PDF, Full-HTML, ePub... selon les formats disponibles) sur la platefome Vision4Press.
Les statistiques sont disponibles avec un délai de 48 à 96 heures et sont mises à jour quotidiennement en semaine.
Le chargement des statistiques peut être long.